	На	all Ticket Number :]]			
	Code: 19DF11T							R-1	R-19							
	M.C.A. I Semester Supplementary Examinations November 2022															
	Mathematical Foundations of Computer Science															
	Max. Marks: 60 Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)															
							****	*****								
						JNI	г 1							Marks	CO	BL
1	a)	Define Stateme	nt a	nd					: tvr		of S	tate	ment	s		
	u)	with Examples			СЛР		vai	louc	, , , ,						CO1	L3
	b)	Prove the valic	lity (of tl	he f	ollo	wing	g ar	gun	nent	t. "If	flg	get the	Э		
	-	job and work hard, then I will get promoted. If I get														
		promoted, then I will be happy. Therefore, either I will not										004				
get the job or I will not work														6IVI	CO1	L2
0	OR 2. a) Define Predicate Statement and explain all the Quantifiers															
Ζ.	a)	with the help of				it ai	iu e	xpia		6M CO1						
	b)	Establish the va		•		e fol	lowi	na a	arqu	me	nts.					L3
	- /	$\exists x (p(x) \land q(x))$		- -		_	-	3	3	_						
		∀ x (p(x) r(x))													
						-										
		∴∃x (r(x) ∧ ¬q	(x)												.	
														6M	CO1	L4
റ		Dofine and Ex	مامان						Do	loti	200	\	h thai	r		
5.	a)	Define and Ex Properties	piali	I Vc	anot	ז בו	ype	5 01	Ne	an	5115	vviti			CO2	L3
	b)	•	prop	oerti	es	of	th	ne	rela	atior	ו ו	R,	Give			
	,	S={1,2,3,.,10}an	daı	elat	ion	R or	۱S۱	whei	e R	= {(x,y)	/ x+	y =10	} 6M	CO2	L4
						OF	२									
4.	a)	Define Lattice a	nd E	Expl	ain t	the	vario	ous	prop	perti	es c	of lat	ttices.	6M	CO2	L3
	b)	Define Hasse D	•								•				co^{2}	L3
		the positive divis	5015	OI C		NIT			allo	1115	xu	IVIG	35 y	OIVI	CO2	LJ
5.	a)	In how many w	avs	can				ers	of th	ne F	nali	sh				
0.	u)	alphabet be per	•								•		CAR ,			
		DOG , PUN or								•				6M	CO3	L1
	b)	How many 8 dig	•				n be	e for	meo	d by	arr	ang	ing		-	
		the digits 1, 1, 7	1, 1,	2, 3	3, 3,		_							6M	CO3	L1
						OF	र									

		Co	ode: 19DF11T		
6. a	a)	State and prove principle of inclusion-exclusion for two sets with the help of example.	6M CO3	L4	
k	b)	Define and Explain Pigeon-Hole Principles and its Application.	6M CO3	L3	
		UNIT-IV			
7. 8	a)	Find the generating function for the sequence 1, 3, 5, 7, 9?	4M CO4	L4	
k	b)	Find the generating function G(n) for $F_n=5F_{n-1}+6$ F_{n-2} where $F_0=1$ and $F_1=4$.	8M CO4	L4	
		OR			
8. a	a)	Find the generating function for the sequence 1, 1, 1, 1, 1, 1, 1.	4M CO4	L4	
k	b)	Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} = 0$ for n 2 given that $a_0 = -1$ and $a_1 = 8$	8M CO4	L3	
		UNIT–V			
9. a	a)	Define Graph and Explain the various types of representation of a Graphs.	6M CO5	L3	
k	b)	Define the terms Eulers formula with the help of an example	6M CO5	L3	
		OR			
	a) b)	Define Spanning Tree. Draw the Spanning Tree by using Kruskals Algorithm for the given graph	2M CO5	L3	

10M CO5 L4