\square

Code: 19DF11T

M.C.A. I Semester Supplementary Examinations November 2022

Mathematical Foundations of Computer Science

Max. Marks: 60
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) Define Statement and Explain various types of Statements with Examples
b) Prove the validity of the following argument. "If I get the job and work hard, then I will get promoted. If I get promoted, then I will be happy. Therefore, either I will not get the job or I will not work hard."

OR

2. a) Define Predicate Statement and explain all the Quantifiers
with the help of examples

6M CO1
b) Establish the validity of the following arguments.
$\exists x(p(x) \wedge q(x))$
$\forall x(p(x) \rightarrow r(x))$
$\therefore \exists \mathrm{x}(\mathrm{r}(\mathrm{x}) \wedge \neg \mathrm{q}(\mathrm{x})$

UNIT-II

3. a) Define and Explain various types of Relations with their Properties
6M CO2 L3
b) Explain the properties of the relation R, Given $S=\{1,2,3, ., 10\}$ and a relation R on S where $R=\{(x, y) / x+y=10\} \quad 6 M \quad C O 2 \quad L 4$ OR
4. a) Define Lattice and Explain the various properties of lattices. 6M CO2 L3
b) Define Hasse Diagram and Draw the Hasse diagram for all
the positive divisors of 36 where the relation is x divides $y \quad 6 M \quad C O 2 \quad$ L3

UNIT-III

5. a) In how many ways can the 26 letters of the English alphabet be permitted So that none of the patterns CAR , DOG , PUN or BYTE occurs
6M CO3 L1
b) How many 8 digit numbers can be formed by arranging the digits $1,1,1,1,2,3,3,3$?
6M CO3 L1 OR
6. a) State and prove principle of inclusion-exclusion for two sets with the help of example.

6 M CO 3 L 4
b) Define and Explain Pigeon-Hole Principles and its Application.

6M CO3 L3

UNIT-IV

7. a) Find the generating function for the sequence $1,3,5,7$, 9.....?

4M CO4
b) Find the generating function $G(n)$ for $F_{n}=5 F_{n-1}+6 F_{n-2}$ where $F_{0}=1$ and $F_{1}=4$.

8 M CO

OR

8. a) Find the generating function for the sequence $1,1,1,1,1$, 1...?
b) Solve the recurrence relation $a_{n}+a_{n-1}-6 a_{n-2}=0$ for $n \geq 2$ given that $\mathrm{a}_{0}=-1$ and $\mathrm{a}_{1}=8$

4M CO4 L4 UNIT-V
9. a) Define Graph and Explain the various types of representation of a Graphs.

6M CO5 L3
b) Define the terms Eulers formula with the help of an example

6M CO5 L3

OR

10. a) Define Spanning Tree.
$2 \mathrm{M} \mathrm{CO5}$
b) Draw the Spanning Tree by using Kruskals Algorithm for the given graph

10M CO5 L4

