	<u> </u>	ode: 20DF12T	R-20		
		M.C.A. I Semester Supplementary Examinations Aug/Sept 2	2023		
		Data Structures and Algorithms	2020		
	Μ	•	ime: 3 H	lours	
		Answer all five units by choosing one question from each unit ($5 \times 12 = 60$	0 Marks)		
		*****		~~	
			Marks	CO	
1.	a)	UNIT–I Differentiate Linear and Non Linear Data Structures with Examples.	6M	CO1	
	b)	Define the term algorithm and state the criteria that the algorithm should	OW	001	
	0)	satisfy	6M	CO1	
		OR			
2.	a)	Explain the role of space complexity in measuring performance of a program	6M	CO1	
	b)	Describe about the asymptotic notations	6M	CO1	
		UNIT–II			
3.		List the applications of queue and write the algorithm to implement queue			
		using Linked List	12M	CO2	
		OR			
1.		Describe the procedure to convert infix expression to postfix form. Convert		000	
		the infix expression A+B*C-D/E*H into its postfix form	I ZIVI	CO2	
5.		UNIT–III Build the binary tree from the given traversal techniques:			
J.		In order: g d h b e i a f j c			
		Preorder: a b d g h e i c f j	12M	CO3	
		OR			
6.	a)	Explain about Linear Probing with example	6M	CO3	
	b)	What is hashing and interpret the need of a good Hash Function	6M	CO3	
		UNIT-IV			
7.		Draw the binary search tree whose elements are inserted in the following			
		order: 50, 72, 96, 94, 107, 26, 12, 11, 9, 2, 10, 25, 51, 16, 17, 95.			
		What is the maximum height of a binary search tree containing these nodes?	12M	CO4	
		OR			
3.	a)	Explain about DFS graph traversal algorithm with an example	6M	CO4	
	b)	Explain about Kruskal's algorithm with an example	6M	CO4	
	-)		014	005	
9.	a)	Write an algorithm to perform Linear search. Illustrate it with an example.	6M	CO5	
	b)	Trace the quick sort algorithm using 90,77,60, 99,55,88	6M	CO5	
h		OR State and explain collection part with an example	<u> </u>	005	
).	a) b)	State and explain selection sort with an example	6M	CO5	
	b)	Write an algorithm to implement Insertion Sort and write its efficiency. ***END***	6M	CO5	

		Hall Ticket Number :			
		Code: 20DF11T	R-20		
		M.C.A. I Semester Supplementary Examinations Aug/Sept 20)23		
	N	Mathematical Foundations of Computer Science Nax. Marks: 60 Answer all five units by choosing one question from each unit (5 x 12 = 60 ********	ne: 3 Hc Marks)	ours	
			Marks	СО	BL
		UNIT–I			
1.	a)	Construct the truth table for $(P \land Q) \lor (P \land R)$.	6M	CO1	L3
	b)	Show that $[(P \rightarrow Q) \land (Q \rightarrow R)] \rightarrow (P \rightarrow R)$ is a tautology	6M	CO1	L2
0	-)	OR Observations (D. C. S.			
2.	a)	Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \rightarrow R, P \rightarrow M, and \neg M$	c M	004	1.0
	b)	Test the validity of the following argument:	6M	CO1	L2
	0)	"If the labour market is perfect, then the wages of all persons in a particular			
		employment will be equal. But it is always the case that wages for such		004	
		persons are not equal. Therefore the labour market is not perfect".	6M	CO1	L3
3.	a)	Determine whether the relation is compatibility, if			
	,	$R = \{(1,1), (2,2), (3,3), (1,3), (3,1)\} \text{ on the set } A = \{1,2,3\}.$	6M	CO2	L3
	b)	Let $R = \{(1,1), (1,2), (2,3), (3,3), (3,4)\}$ be a relation on $A = \{1,2,3,4\}$. Draw the			
		diagraph of R. Obtain R^2 and draw the diagraph of R^2 .	6M	CO2	L3
4		OR Drow the Happen diagram for the paper $(R(A) =)$ where $A = (a, b, c)$			
4.		Draw the Hasse diagram for the poset $(P(A), \subseteq)$, where $A = \{a, b, c\}$	12M	CO2	L4
5.	a)	In how many different ways 5 men and 5 women can be seated around a table			
	,	if (i) There is no restriction. (ii) No two ladies sit together.	6M	CO3	L3
	b)	Find the value of n such that $P(n,3) = 3P(n,2)$	6M	CO3	L1
e					
6.	a)	Find the coefficient of $x^3y^3z^2$ in the expansion of $(2x-3y+5z)^8$	6M	CO3	L1
	b)	Prove that in a group of 13 persons, at least two persons must have born in the same month.	6M	CO3	L2
		UNIT–IV			
7.	a)	Find the coefficient of x^{20} in $(x^3 + x^4 + x^5 +)^5$.	6M	CO4	L3
	b)	Find the generating function for the sequence (0,1,2,3,)	6M	CO4	L4
o		OR Solve the requirence relation by using the observatoristic roots mothed			
8.		Solve the recurrence relation by using the characteristic roots method $a_n + 4a_{n-1} + 4a_{n-2} = 8$, for $n \ge 2$ given $a_0 = 1, a_1 = 2$.	12M	CO4	13
			12101	004	LU
9.	a)	Define (i) Degree of a vertex (ii) Sub Graph (iii) Simple Graph.	6M	CO5	L1
	b)	Prove that complete graph of 5 vertices is non-planar.	6M	CO5	L2
10.		OR Define Minimum Spanning Tree. Explain Kruskal's algorithm with an example.	12M	CO5	L4
		END	Dago 1	of 1	

	Hall Ticket Number :	R-20	
C	Code: 20DC11T		
	M.C.A. I Semester Supplementary Examinations A	g/Sept 2023	
	Probability and Statistics Max. Marks: 60	Time: 3 Hou	Irc
Г	Answer all five units by choosing one question from each unit		112
	*******	,	
		Marks	СО
-)	UNIT-I	ath an fan an	
a)	The students in a class are selected at random, one after a examination. Find the probability that the boys and girls in the original sectors.		
	alternately if (i) The class consists of 4 boys and 3 girls. (ii) The c	•	
	3 boys and 3 girls.	6M	1
b)) If a random variablenhas the probability density function		
	$f(x) = \begin{cases} k(x^2 - 1), -1 \le x \le 3\\ 0, elsewhere \end{cases} $ find the value of K, and $p\left(\frac{1}{2}\right)$	$\left(x \leq \frac{5}{2}\right)$	
		- 2 / 6M	3
2)	OR	d and C white	
a)	Box A contains 5 red and 3 white marbles and box B contains 2 r marbles. If a marble is drawn from each box and it is found to be red		
	probability that the red ball drawn is from bag B.	6M	1
b)) A random variable X has the following probability distribution		
	X 1 2 3 4 5 6 7		
	P(X) K 2K 3K 4K 5K 6K 7K 8	<	
	Find the value of i) K ii) P(X 2)	6M	4
,			
a)	 20% of items produced from a factory are defective. Find the prob sample of 5 chosen at random 	bility that in a	
	(i) none is defective (ii) one is defective (iii) $P(1 \le X \le 4)$). 6M	3
b)		0	5
0)	mean of the Poisson distribution is 3.	6M	2
	OR		
a)) Ten coins are tossed simultaneously. Find the probability of getting	t least	
	(i) Seven heads (ii) Six heads	6M	5
b)) The mean and S.D of normal distribution are 70 and 16, find $P(38 < 1)$	i < 46). 6M	2
_	UNIT-III		
•	A population consists of 5, 10, 14, 18, 13, 24. Consider all possible s wo can be drawn without replacement from the population. Find	mples of size	
	i) Mean of the population.		
	ii) Standard deviation of the population.		
iii	iii) The mean of the sampling distribution of means.		
	iv) The Standard deviation of the sampling distribution of means.	12M	3
iv	OR		

12M

2

4

b) A manufacturer claimed that at least 95% of the equipment which he supplied to a factory conformed to specifications. An examination of a sample 200npieces of equipment revealed that 18 were faulty. Test his claim at 5% level of significance.

UNIT–IV

- 7. a) The manufacturer of certain electric bulbs claims that his bulbs have a mean life of 25 months with S.D of 5 months. A random sample of 6 such bulbs gave the following values. Life of months: 24, 26, 30, 20, 20, 18. Can you regard the producers' claims to be valid at 0.01 level of significance?
 - b) Two random samples have the following results.

Sample	Size	Sample mean	Sum of square of deviations from the mean
1	10	15	90
2	12	14	108

OR

Test whether the samples came from the same normal population.

- 8. a) A sample of 26 bulbs gives a mean life of 990 hrs with S.D of 20 hrs. The manufacturer claims that the mean life of bulbs is 1000 hrs. Is the sample not up to the standard?
 - b) The following table gives the classification of 100 workers according to sex and nature of work. Test whether the nature of work is independent of sex of the worker.

	Stable	Unsta	able	Total
Males	40	20)	60
Females	10	30)	40
Total	50	50)	100
-				

UNIT–V

- 9. Arrivals at a telephone booth are considered to be Poisson, with an average time of 10 minutes between one arrival and the next. The length of a phone call assumed to be distributed exponentially with mean 3 minutes. Then
 - i) What is probability that a person arriving at the both will have to wait?
 - ii) What is the average length of the queues that from time to time?
 - iii) The telephone department will install a second booth convinced that an arrival would expect to have to wait at least three minutes for the phone. By how much must the flow of arrivals be increased in order to justify a second booth?

OR

- 10. A bank has one drive in counter. It is essential that cars arrive according to poisson distribution at the rate of 2 every 5 minutes and that there is enough space to a accommodate a line of 10 cars. Other arriving cars can wait outside this space, if necessary. It takes 1.5 minutes on an average to serve a customer, but the service time actually varies according to an exponential distribution Find
 - i) The proportion of time the facility remains idle.
 - ii) The expected number of customers waiting but currently not being served at a particular point of time.
 - iii) The expected time a customer spends in the system and
 - iv) The probability that the waiting line will exceed the capacity of the space leading to the drive in counter.

END

Code: 20DC11T

3

2

1

3

6M

6M

6M 4 4

6M 3 2

6M 2 1

52

12M

	Н	all Ticket Number :]				
	Co	de: 20DF13T								J				R-2	20		
	00	M.C.A. I Sem	este	er Su	pple	eme	enta	ry Ex	am	inat	ions	AU	g/Sep	ot 2023			
		Rela			• •												
	Мс	x. Marks: 60 Answer all five units	shv	choc	nsina	one		stion	fron		~h u	ait (4	5 v 10 :	Time: 3			
			5 D y (Jan G		****		non	rcu			5 1 1 2		5		
														Mark	s	со	BL
							UNI	T–I									
1.		Describe data mod								moc	lel?	What	t is da				
		independence and h	IOW C	loes	a DE	BMS			?					121	M	CO1	L2
2.	2)	Explain various notat	ione	ucod	in Er	otity	Ol Polot		vin di	oaro		ith a	ampla	s 61	М	CO1	L2
۷.	a) b)	Illustrate the extended					Relat	.101151	iip ui	ayrai	115 W		ampie	s 61 61		CO1	L2 L3
	0)		Su L		ature	.5	UNI	T_11						0	vi	001	LJ
3.	a)	Explain the fundame	ental	Rela	itiona	al alg			atior	IS				61	М	CO2	L2
	b)	Illustrate Tuple relat				Ŭ		•			e que	eries		61	М	CO2	L3
	,					•	O	R			•						
4.	a)	Illustrate Domain rel	ation	al ca	alculu	is op	erati	ons v	vith e	exam	ple c	querie	es	61	Μ	CO2	L3
	b)	Describe QBE (Que	ry-by	-Exa	ample	e) op	eratio	ons v	vith e	xam	ple q	uerie	es	61	Μ	CO2	L2
							UNI	Γ—III									
5.	a)	Explain briefly about	-			••			•					61		CO3	L2
	b)	Differentiate betwee	n prii	mary	' key	cons			fore	ign k	key c	onsti	raint?	61	M	CO3	L2
0	、			-			O									000	
6.	a) b)	Differentiate betwee										•		61		CO3	L2
	D)	Discuss join depend	encie	es ar	ια ππ	n no	UNI1		, and	i exp	iain v	wny :	SINF ?	01	VI	CO3	LZ
7.	a)	Explain ACID prope	rties	and	Illusti	rate			uah e	exam	nles	?		61	М	CO4	L2
	b)	Describe the Transa							agni	or carr		•			M		
	,						O	•									
8.	a)	Explain in detail abo	ut st	orage	e stru	uctur	e?							61	М	CO4	L2
	b)	Explain ARIES Reco	overy	, Algo	orithn	n								61	Μ	CO4	L2
							UNI	T–V									
9.	a)	Explain about Orgar	nizati	on of	f Rec	ords	in F	iles						61	M	CO5	L2
	b)	Explain the significa	nce d	of Or	dere	d Inc								61	M	CO5	L2
							O	R									
10.	a)	Explain about B-Tre												61		CO5	L2
	b)	Differentiate betwee	n Sta	atic a	ind D	•			ng					61	M	CO5	L2
						*	**EN	U***									

	Ha	all Ticket Number :			
	Co	de: 20DF14T	R-20		
	00	M.C.A. I Semester Supplementary Examinations Aug/Sept 2	2023		
		Computer Organization		1	
	MC	T Answer all five units by choosing one question from each unit (5 x 12 = 60 ********	ime: 3 H) Marks		
			Marks	СО	BL
	、				
1.	a)	Explain the implementation of 16-bit ripple-carry adder using the full adder building blocks	6M	CO1	L2
	b)	Prove that the 2-data input multiplexer is universal by showing how 2-input AND and NOT gates can be implemented using this multiplexer		CO1	L3
		OR	•		
2.	a)	Explain in detail on the concepts of PAL and PLA	6M	CO1	L2
	b)	Show an implementation of the full adder by using two half-adders and a 2-input OR gate	6M	CO1	13
			OIVI	001	LJ
		UNIT–II			
3.	a)	Discuss in detail about memory hierarchy in a computer Systems	6M	CO2	
	b)	Explain in detail about Typical RAM chip with a schematic	6M	CO2	L2
4.	a)	OR Explain about CACHE memory and its usage	6M	CO2	12
т.	b)	Explain about of the memory and its usage	6M	CO2	
	-				
5.		UNIT–III Discuss about the addressing modes of 8086 in detail	12M	CO3	12
0.		OR	12111	000	
6.		Discuss in detail about the architecture of 8086	12M	CO3	L2
		UNIT–IV			
7.	a)	Discuss in detail about Shift and rotate instructions	6M	CO4	L2
	b)	Explain in detail about Conditional and unconditional transfer instructions	6M	CO4	L2
		OR			
8.	a)	Explain how is Iteration control undertaken in 8086	6M	CO4	
	b)	Discuss on how are Interrupts handles in 8086	6M	CO4	L2
		UNIT–V			
9.		Discuss in detail about the general configuration of a microprogrammed control unit.			
		OR	12M	CO5	L2
10.	a)	What is meant by Control Branching? Explain about the Selection of			
	/	address for control memory.	6M	CO5	L2
	b)	Explain in detail about Symbolic Microprogram	6M	CO5	L2
		All the Best	Dage	e 1 of 1	
			rage		