\square
Code: 20DF12T

M.C.A. I Semester Supplementary Examinations Aug/Sept 2023

Data Structures and Algorithms

Max. Marks: 60 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL
UNIT-I
UNIT-I
6M CO1
6M CO1 L2 L2
b) Define the term algorithm and state the criteria that the algorithm should
b) Define the term algorithm and state the criteria that the algorithm should satisfy satisfy 6M CO1 L1 6M CO1 L1
OR
OR
2. a) Explain the role of space complexity in measuring performance of a program 6M CO1 L2
b) Describe about the asymptotic notations
b) Describe about the asymptotic notations 6M CO1 6M CO1 L2 L2
UNIT-II
UNIT-II
3. List the applications of queue and write the algorithm to implement queue
3. List the applications of queue and write the algorithm to implement queue using Linked List
OR
OR
4. Describe the procedure to convert infix expression to postfix form. Convert the infix expression $\mathbf{A}+\mathbf{B}^{\star} \mathbf{C}-\mathbf{D} / \mathbf{E}^{\star} \mathbf{H}$ into its postfix form
5. Build the binary tree from the given traversal techniques:
5. Build the binary tree from the given traversal techniques:
In order: gdhbeiafjc
In order: gdhbeiafjc
Preorder: abdgheicfj
Preorder: abdgheicfj
OR
OR
6. a) Explain about Linear Probing with example
6. a) Explain about Linear Probing with example 6M CO3 L2
b) What is hashing and interpret the need of a good Hash Function
b) What is hashing and interpret the need of a good Hash Function $6 \mathrm{M} \mathrm{CO3} \quad \mathrm{~L} 2$ $6 \mathrm{M} \mathrm{CO3} \quad \mathrm{~L} 2$
UNIT-IV7. Draw the binary search tree whose elements are inserted in the followingorder: $50,72,96,94,107,26,12,11,9,2,10,25,51,16,17,95$.
What is the maximum height of a binary search tree containing these nodes? 12M CO4 L3
OR
8. a) Explain about DFS graph traversal algorithm with an example 6M CO4 L2
b) Explain about Kruskal's algorithm with an example 6 M CO4 L2
UNIT-V9. a) Write an algorithm to perform Linear search. Illustrate it with an example.6 M CO5 L2
b) Trace the quick sort algorithm using $90,77,60,99,55,88$ $6 \mathrm{M} \mathrm{CO5}$ L3
OR
10. a) State and explain selection sort with an example 6 M CO5 L2
b) Write an algorithm to implement Insertion Sort and write its efficiency. $6 \mathrm{M} \mathrm{CO5}$ L3
END

Code: 20DF11T
M.C.A. I Semester Supplementary Examinations Aug/Sept 2023

Mathematical Foundations of Computer Science

Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-

1. a) Construct the truth table for $(P \wedge Q) \vee(P \wedge R)$.
b) Show that $[(P \rightarrow Q) \wedge(Q \rightarrow R)] \rightarrow(P \rightarrow R)$ is a tautology

OR

2. a) Show that $R \wedge(P \vee Q)$ is a valid conclusion from the premises

$$
P \vee Q, Q \rightarrow R, P \rightarrow M, \text { and } \neg M
$$

6M CO1
b) Test the validity of the following argument:
"If the labour market is perfect, then the wages of all persons in a particular employment will be equal. But it is always the case that wages for such persons are not equal. Therefore the labour market is not perfect".

6M CO1

UNIT-II

3. a) Determine whether the relation is compatibility, if
$R=\{(1,1),(2,2),(3,3),(1,3),(3,1)\}$ on the set $A=\{1,2,3\}$.
6M CO2 L3
b) Let $R=\{(1,1),(1,2),(2,3),(3,3),(3,4)\}$ be a relation on $A=\{1,2,3,4\}$. Draw the diagraph of R. Obtain R^{2} and draw the diagraph of R^{2}.

OR
4. Draw the Hasse diagram for the poset $(P(A), \subseteq)$, where $A=\{a, b, c\}$

UNIT-III

5. a) In how many different ways 5 men and 5 women can be seated around a table if (i) There is no restriction. (ii) No two ladies sit together.

6M CO3 L3
b) Find the value of n such that $P(n, 3)=3 P(n, 2)$

OR
6. a) Find the coefficient of $x^{3} y^{3} z^{2}$ in the expansion of $(2 x-3 y+5 z)^{8}$
b) Prove that in a group of 13 persons, at least two persons must have born in the same month.

UNIT-IV

7. a) Find the coefficient of x^{20} in $\left(x^{3}+x^{4}+x^{5}+---\right)^{5}$.
b) Find the generating function for the sequence ($0,1,2,3,----)$

OR

8. Solve the recurrence relation by using the characteristic roots method $a_{n}+4 a_{n-1}+4 a_{n-2}=8$, for $n \geq 2$ given $a_{0}=1, a_{1}=2$.

12M CO4 L3

UNIT-V

9. a) Define (i) Degree of a vertex
(ii) Sub Graph (iii) Simple Graph.
$6 \mathrm{M} \mathrm{CO5}$
b) Prove that complete graph of 5 vertices is non-planar.

OR

10. Define Minimum Spanning Tree. Explain Kruskal's algorithm with an example.

Code: 20DC11T

M.C.A. I Semester Supplementary Examinations Aug/Sept 2023

Probability and Statistics

Max. Marks: 60

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) The students in a class are selected at random, one after another, for an examination. Find the probability that the boys and girls in the class arranged alternately if (i) The class consists of 4 boys and 3 girls. (ii) The class consists of 3 boys and 3 girls.
b) If a random variablenhas the probability density function

$$
f(x)=\left\{\begin{array}{cc}
k\left(x^{2}-1\right),-1 \leq x \leq 3 \\
0, \text { elsewhere } & \text { find the value of } \mathrm{K}, \text { and } p\left(\frac{1}{2} \leq x \leq \frac{5}{2}\right)
\end{array}\right.
$$

OR

2. a) Box A contains 5 red and 3 white marbles and box B contains 2 red and 6 white marbles. If a marble is drawn from each box and it is found to be red. What is the probability that the red ball drawn is from bag B.
b) A random variable X has the following probability distribution

X	1	2	3	4	5	6	7	8
$P(X)$	K	$2 K$	$3 K$	$4 K$	$5 K$	$6 K$	$7 K$	$8 K$

Find the value of i) $K \quad$ ii) $P(X \leq 2)$
6M 46

UNIT-II

3. a) 20% of items produced from a factory are defective. Find the probability that in a sample of 5 chosen at random
(i) none is defective
(ii) one is defective
(iii) $\mathrm{P}(1<\mathrm{X}<4)$.
$6 \mathrm{M} \quad 3 \quad 3$
b) Using recurrence formula find the probabilities when $x=0,1,2,3,4$ and 5 ; if the mean of the Poisson distribution is 3 .

OR

4. a) Ten coins are tossed simultaneously. Find the probability of getting at least
(i) Seven heads
(ii) Six heads

6M
$5 \quad 1$
b) The mean and S.D of normal distribution are 70 and 16, find $\mathrm{P}(38<\mathrm{X}<46)$.

6 M 23

UNIT-III

5. A population consists of $5,10,14,18,13,24$. Consider all possible samples of size two can be drawn without replacement from the population. Find
i) Mean of the population.
ii) Standard deviation of the population.
iii) The mean of the sampling distribution of means.
iv) The Standard deviation of the sampling distribution of means.
6. a) In a sample of 500 from a village in Andhra Pradesh, 280 are found to be rice eaters and rest wheat eaters. Can we assume that the both articles are equally popular?
b) A manufacturer claimed that at least 95% of the equipment which he supplied to a factory conformed to specifications. An examination of a sample 200npieces of equipment revealed that 18 were faulty. Test his claim at 5% level of significance.

UNIT-IV

7. a) The manufacturer of certain electric bulbs claims that his bulbs have a mean life of 25 months with S.D of 5 months. A random sample of 6 such bulbs gave the following values. Life of months: 24, 26, 30, 20, 20, 18. Can you regard the producers' claims to be valid at 0.01 level of significance?
b) Two random samples have the following results.

Sample	Size	Sample mean	Sum of square of deviations from the mean
1	10	15	90
2	12	14	108

Test whether the samples came from the same normal population.

OR

8. a) A sample of 26 bulbs gives a mean life of 990 hrs with S.D of 20 hrs. The manufacturer claims that the mean life of bulbs is 1000 hrs . Is the sample not up to the standard?
b) The following table gives the classification of 100 workers according to sex and nature of work. Test whether the nature of work is independent of sex of the worker.

	Stable	Unstable	Total
Males	40	20	60
Females	10	30	40
Total	50	50	100

UNIT-V
9. Arrivals at a telephone booth are considered to be Poisson, with an average time of 10 minutes between one arrival and the next. The length of a phone call assumed to be distributed exponentially with mean 3 minutes. Then
i) What is probability that a person arriving at the both will have to wait?
ii) What is the average length of the queues that from time to time?
iii) The telephone department will install a second booth convinced that an arrival would expect to have to wait at least three minutes for the phone. By how much must the flow of arrivals be increased in order to justify a second booth?

OR

10. A bank has one drive in counter. It is essential that cars arrive according to poisson distribution at the rate of 2 every 5 minutes and that there is enough space to a accommodate a line of 10 cars. Other arriving cars can wait outside this space, if necessary. It takes 1.5 minutes on an average to serve a customer, but the service time actually varies according to an exponential distribution Find
i) The proportion of time the facility remains idle.
ii) The expected number of customers waiting but currently not being served at a particular point of time.
iii) The expected time a customer spends in the system and
iv) The probability that the waiting line will exceed the capacity of the space leading to the drive in counter.

Code: 20DF13T

M.C.A. I Semester Supplementary Examinations Aug/Sept 2023 Relational Database Management Systems
Max. Marks: 60
\qquad

UNIT-I

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 12=60$ Marks)

1. Describe data model? What is the relational data model? What is data independence and how does a DBMS support it?

12M CO1 L2
OR
2. a) Explain various notations used in Entity-Relationship diagrams with examples

6M CO1
L2
b) Illustrate the extended E-R features

6 M CO L3

UNIT-II

3. a) Explain the fundamental Relational algebra operations

6 M CO 2
L2
b) Illustrate Tuple relational calculus operations with example queries

6 M CO 2 L3

OR

4. a) Illustrate Domain relational calculus operations with example queries

6 M CO 2
L3
b) Describe QBE (Query-by-Example) operations with example queries

6 M CO 2 L2

UNIT-III

5. a) Explain briefly about joins and its types with examples?
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
b) Differentiate between primary key constraint and foreign key constraint? $\quad 6 \mathrm{M} \quad \mathrm{CO} 3 \quad \mathrm{~L} 2$

OR

6. a) Differentiate between 3NF and BCNF normal forms with examples.

6M CO3 L2
b) Discuss join dependencies and fifth normal form, and explain why 5NF?

6 M CO 3 L 2
UNIT-IV
7. a) Explain ACID properties and Illustrate them through examples?

6 M CO4 L2
b) Describe the Transaction state with an example

OR
8. a) Explain in detail about storage structure?

6M CO4 L2
b) Explain ARIES Recovery Algorithm

6 M CO 4L2

UNIT-V
9. a) Explain about Organization of Records in Files

6 M CO5 L2
b) Explain the significance of Ordered Indices
$6 \mathrm{M} \mathrm{CO5}$ L2
OR
10. a) Explain about B-Tree Index files
b) Differentiate between Static and Dynamic Hashing

6 M CO5 L2
END

