_	Hall Ticket	i tuiliboi .										
С	ode: 20DC	11T							K	R-20		
	M.C	.A. I Semes		•				ovemb	er 202	22		
			Probo	ability an	d Stat	istic	S					
-	Max. Marks		tions by obo	acing one	auastia	n from	m agal	a unit 15	_	: 3 Hou	-	
7	answer arry i	five full ques	HOLIS DY CITC	****	•	11 1101	n eaci	101111 (3	X12 — (ou Mark	S)	
										Marks	CO	BL
				UNIT-I								
1. a)		les are draw					•					
		d 15 orange robability tha		•	-	•			•	4M	CO1	L2
b)	•	variable X ha	``	` ,			3 56001	iu is willi		4111	COT	LZ
D)	X=x	-3 -2		0	1	2	3					
	P(X=x)	k 3k		7k	9k	11k	11k	-				
	` ,	(ii) Mean (iii				TIK	TIK			ВM	CO1	13
	Tilla (I) K	(II) MEAIT (III	i) variance	OR	.0)					Olvi	COT	L
2. a)	Of the thre	e men, the c	hanaas that	_	husina	oc m	on or or	, acadan	nicion			
2. a)		•		•								
	•	pointed as V		•			•	•	•			
		rch is promot	ea by the pe	erson it the p	person i	s app	ointea	as vC ar	e 0.3,			
		spectively.										
	` '	nine the proba	•	•								
		rch is promote						cian?		6M	CO1	L2
b)	A continuo	ous random	ed, what is the	the roability t	that VC	is / fu	ınction					
		V	ariable has	$-\alpha x$ Probabil	lity den	SIT) ()						
		f	f(x) = kxe 0. ot	'for x herwise.	$\geq 0, \alpha$	>						
	Determine	e (i) k (ii) Mea	•							6M	CO1	L3
		, , ,		UNIT-II								
3. a)	termine	SSON (II) IVIE	an (III) IVI	() NIT-II	」 1)	hahili	ty that					
J. U)	or a Po (j) <i>P(X</i> ≤	is Variate	2P(X=0):	(=2). Find	the pro	babiii	ty triat			01.4	000	
	a distrib	exactly								6IVI	CO2	L2
b)		ution exactly						9% are	under	014	000	
	63.What a	re the mean	and Standar		of the	distrit	oution?			6M	CO2	L2
				OR								
4.		sson Distrib	ution for fo	ollowing da	ata and	l cald	culate	the exp	ected			
	frequencie			_								
	X=x	0	1	2		3	4					
	f(x)	109	65	22	3	3	1			121/1	CO2	1./
				UNIT–III	7					ı ZIVİ	002	L4
					1							

- 5. which can be drawn without replacement from this population. Find
 - (i) The population mean

- (ii) The population standard deviation
- (iii) The mean of sampling distribution of means
- (iv) The standard deviation of sampling distribution of means.

12M CO3 L3

Code: 20DC11T

6. a) The mean and Standard deviation of a population are 14,054 and 11795 respectively .What can one assert with 95% confidence about the maximum error if sample mean = 14054 and n=50.And also construct 95% confidence interval for the true mean.

8M CO3 L4

b) A sample of 11 rats from a central population had an average blood viscosity of 3.92 with S.D of 0.61.Estimate the 95% confidence limits for the mean blood viscosity of the population.

4M CO3 L4

UNIT-IV

7. Five unbiased dice were thrown 96 times and the number of times 4 or 5 or 6 was obtained is given below.

No. of dice showing 4,5 or 6	5	4	3	2	1	0
Frequency	8	18	35	24	10	1

Fit a suitable distribution and test for goodness of fit.

12M CO4 L4

OR

8. Two random sample drawn from 2 normal populations are given below. Do the estimate of variances differ significantly at 5% level of significance?

Sample I	20	16	26	27	23	22	18	24	25	19		
Sample II	17	23	32	25	22	24	28	16	31	33	20	27
			,				. ,					

12M CO4 L4

- UNIT-V
- 9. In a telephone exchange the arrival of calls follow Poisson Distribution with an average time of 8 minutes between two consecutive calls. The length of a call is exponentially distributed with mean 4 minutes. Determine
 - (i) The probability that a call arriving at the booth will have to wait.
 - (ii) The average queue length that forms from time to time.
 - (iii) The probability that an arrival will have to wait for more than 10 minutes before the phone is free.
 - (iv) The hours of a day that the exchange will be in use.

12M CO5 L3

OR

- 10. At a one man barber shop, customers arrive according to Poisson distribution with a mean arrival rate of 5 per hour and the hair cutting time is exponentially distributed, with an average hair cut taking 10 minutes. It is assumed that because of his excellent reputation customers are always willing to wait. Calculate
 - (i) Average number of customers in the shop
 - (ii) Average number of customers waiting for hair cut
 - (iii) The percent of time an arrival can walk right in without waiting
 - (iv) The percent of customers who have to wait prior to getting into the Barbar's chair.

12M CO5 L3

END

Hall Ticket Number :						

Code: 20DF13T

R-20

M.C.A. I Semester Supplementary Examinations November 2022

Relational Database Management Systems

Max. Marks: 60 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)

	Ar	nswer any five full questions by choosing one question trom each unit ($5x12 = 6$ *********	50 Mark	s)	
			Marks	СО	BL
		UNIT-I			
1.		Explain the components of the database architecture with a neat diagram	12M	1	2
		OR			
2.		Explain the process of database design with ER model. Construct an ER diagram for banking enterprise. UNIT-II	12M	2	3
3.		Construct the Relational algebra expressions for the following schema: SAILORS (SID, SNAME, CITY) BOATS (BID, BNAME, COLOR) RESERVES (SID, BID, DAY) Find name of the boats sailed by the sailors who live in Boston. Find the names of sailors who sailed in both green and blue color boats.			
		Find the sailor IDs of those, whose rating is greater than 9.	4014	•	•
		Find the names of boats, used for sailing on 09/May/22.	12M	3	3
	,	OR	01.4	_	
4.	a)	Explain QBE with appropriate examples.	6M	2	2
	b)	Represent the following SQL queries in Domain Relational Calculus i) Select Ino from Ioan where amount > 1200; ii) Select cname from depositor, account where			
		depositor.ano = account.ano and bname = 'Brighton':	6M	2	3
		UNIT-III			
5.	a)	Differentiate Nested queries and Co-related queries with an example	6M	3	2
	b)	What are DDL commands? Give the syntax of each command	6M	3	2
		OR			
6.	a)	What is a Trivial functional dependencies? Give an example.	4M	5	3
	b)	Define and Explain 1NF, 2NF and 3NF	8M	5	2
		UNIT-IV			
7.	a)	What are the states of a transaction?	5M	5	2
	b)	What is a schedule? Illustrate view serializability	7M	5	3
		OR			
8.		Explain the three phases of an ARIES recovery model. UNIT-V	12M	5	3
9.		What is the fanout for a B+ tree of degree 4? Construct a B+ tree of 4 th order for the following values. 20, 16, 3, 21, 9, 7, 23, 15, 11 OR	12M	6M	6M
10.	a)	Explain hashing. What is linear Probing?	6M	6M	3
	b)	List the advantages and disadvantages of Static and Dynamic Hashing.	6M	6M	2

Hall Ticket Number :						Г	_
						l	

Code: 20DF14T M.C.A. I Semester Supplementary Examinations November 2022

Computer Organization

Max. Marks: 60 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)

			Marks	CO	BL
		UNIT-I			
1.	a)	What is BCD code write the conversion steps of BCD to binary code?	6M	2	2
	b)	Briefly explain the following.			
		i. Decoders ii. Multiplexers iii. Error Detecting Codes.	6M	2	2
		OR			
2.		Define Flip-Flop? Explain the different types of Flip-Flop.	12M	2	1
		UNIT-II			
3.		What is cache memory? Explain types of mapping functionalities.	12M	3	2
4	۵۱	OR Fundain Marson Address Manin datail	CNA	0	0
4.	a)	Explain Memory Address Map in detail. What is the difference between BAM and BOM in terms of applications?	6M 6M	2	2
	b)	What is the difference between RAM and ROM in terms of applications?	OIVI	3	2
		UNIT-III			
5.	a)	What is address transfer and explain it clearly?	6M	2	2
	b)	Explain the concept of Intel 8086 CPU architecture in detailed.	6M	1	2
		OR			
6.		Define instruction format? Explain about various types of instruction	4014	2	0
		formats?	12M	3	2
		UNIT-IV			
7.	a)	Describe interrupts and its control instructions?	6M	1	2
	b)	Define the data transfer instructions, arithmetic and logical instructions?	6M	2	2
		OR			
8.	a)	Describe assembler directives and explain it.	6M	3	1
	b)	Describe the importance of address instructions.	6M	2	1
		UNIT-V			
9.	a)	Explain parallel priority and its use.	6M	2	2
	b)	Define peripheral devices and why peripheral devices are important	6M	2	1
		OR			
10.		Explain micro instruction format. Explain design of control unit ****END****	12M	3	3

R-20

Hall Ticket Number :						D 00
Code: 20DF12T						R-20

M.C.A. I Semester Supplementary Examinations November 2022

Data Structures and Algorithms

Max. Marks: 60 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)

4nsv	ver a	iny five full questions by choosing one question from each unit (5	5x12 = 60) Marl	cs)
			Marks	СО	BL
		UNIT-I			
1.	a)	Define Performance Analysis of an algorithm?	4M	1	1
	b)	Illustrate time and space complexity related to algorithms and also state their importance?	8M	1	4
		OR			
2.	a)	Explain Big-oh and omega notation with examples.	6M	1	2
	b)				
		following algorithm.			
		Algorithm MAdd(A,B,C,n) { for i=1 to n do			
		for $j=1$ to n do			
		C[i][j]=A[i][j] + B[i][j]			
		}	6M	1	3
		UNIT-II			
3.	a)	Illustrate stack operations to check whether the			
		given string is palindrome or not.	6M	2	3
	b)	Illustrate insert, delete and display operations in a		_	
		Circular queue.	6M	2	4
		OR			
4.	a)	Illustrate insert and delete operations an element in a circular linked list.	6M	2	3
	h)	Build an algorithm to invert a linked list.	6M	2	6
	D)	UNIT-III	Olvi	۷	U
5.	a)	Define Hash Table? Explain the functions of Hash			
	,	table?	4M	3	1
	b)	Illustrate the basic two techniques for Collision-			
		resolution in Hashing with example.	8M	3	4
		OR			
6.	a)	Choose different File Organizations and discuss the		_	_
		advantages and disadvantages of each of them.	6M	3	5
	b)	Illustrate indexed file organization.	6M	3	4

Code: 20DF12T UNIT-IV 7. a) Develop algorithm to create a Binary Search Tree and perform Insertion and Deletion Operations. 6M 4 6 b) Evaluate the time complexity for the above binary search tree algorithm. 6M 4 5 **OR** Explain Kruskal's algorithm with the help of example for minimum spanning tree. 6M 4 2 b) Develop single source shortest path using Dijkstra's algorithm. 6M 4 6 UNIT-V 9. a) Build Minimum Heap for an array 12, 3, 45, 65, 9, 28. 6M 5 6 b) Develop Heap Sort algorithm to sort an integer array 6M 5 6 in an ascending order. OR Illustrate Quick sort algorithm using divide and 10. a) conquer method 6M 5 3 b) Evaluate Quick Sort for best, average and worst case. 6M 5 5

****END****

	Ha	all Ticket Number :	R-2	20	
	Со	de: 20DF11T M.C.A. I Semester Supplementary Examinations Novembe			
		Mathematical Foundations of Computer Science			
		ax. Marks: 60 swer any five full questions by choosing one question from each unit (5x ***********************************	Time: 3 12 = 60		
			Marks	СО	BL
		UNIT-I			
1.	a)	Define Statement and Explain various types of Statements	GN/	CO1	1.0
	h)	with Examples Prove the validity of the following argument "If I get the	OIVI	CO1	L3
	b)	Prove the validity of the following argument. "If I get the job and work hard, then I will get promoted. If I get			
		promoted, then I will be happy. Therefore, either I will not			
		get the job or I will not work hard."	6M	CO1	L2
		OR			
2.	a)	Define Predicate Statement and explain all the Quantifiers	6M	CO1	L3
	h)	with the help of examples Establish the validity of the following arguments.	OIVI	CO1	LS
	D)	$\exists x (p(x) \land q(x))$			
		$\forall x (p(x) r(x))$			
		$\therefore \exists x \ (\ r(x) \land \neg q(x)$			
			6M	CO1	L4
_	- \	UNIT-II			
3.	a)	Define and Explain various types of Relations with their Properties	6M	CO2	L3
	b)	Explain the properties of the relation R, Given	Olvi	002	LO
	ω,	$S=\{1,2,3,,10\}$ and a relation R on S where $R=\{(x,y) / x+y=10\}$	6M	CO2	L4
		OR			
4.	a)	Define Lattice and Explain the various properties of lattices.	6M	CO2	L3
	b)	Define Hasse Diagram and Draw the Hasse diagram for all	CN 4	000	
		the positive divisors of 36 where the relation is x divides y UNIT-III	OIVI	CO2	L3
5	a)	In how many ways can the 26 letters of the English			
Ο.	u,	alphabet be permitted So that none of the patterns CAR,			
		DOG , PUN or BYTE occurs	6M	CO3	L1
	b)	How many 8 digit numbers can be formed by arranging		00-	
		the digits 1, 1, 1, 1, 2, 3, 3, 3?	6M	CO3	L1
		OR			

Code: 20DF11T

6.	a)	State and prove principle of inclusion-exclusion for two sets with the help of example.	6M CO3	L4
	b)	Define and Explain Pigeon-Hole Principles and its Application.	6M CO3	L3
		UNIT-IV	OW OOO	LO
7.	a)	Find the generating function for the sequence 1, 3, 5, 7,		
	ω,	9?	4M CO4	L4
	b)	Find the generating function $G(n)$ for $F_n=5F_{n-1}+6$ F_{n-2}		
		where $F_0=1$ and $F_1=4$.	8M CO4	L4
		OR		
8.	a)	Find the generating function for the sequence 1, 1, 1, 1, 1, 1?	4M CO4	L4
	b)	Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} = 0$ for n 2 given that $a_0 = -1$ and $a_1 = 8$	8M CO4	L3
		UNIT-V		
9	a)	Define Graph and Explain the various types of		
٥.	u)	representation of a Graphs.	6M CO5	L3
	b)	Define the terms Eulers formula with the help of an		
	,	example	6M CO5	L3
		OR		
10.	a)	Define Spanning Tree.	2M CO5	L3
	b)	Draw the Spanning Tree by using Kruskals Algorithm for the given graph		
		0 0 7		

14

END

11

10M CO5

L4