Hal	l Tic	ket Number										
			•					R-19				
Coi		19B211T Tech. I Sen	Advanc	ed Po		m Analys		ns July 2021				
		1arks: 60 any five qu	•		,	,	ach un	Time: 3 Hc it (5x12=60Mc				
					UNIT-I							
1.	a)	Define the t	erm sparsity i	n detail,	along with	suitable exan	nples		31			
	b)	Discuss about the triangular factorization.										
	c)	Discuss abo	out the Optima	al Order	ing & differe	nt schemes	to obtain	it.	41			
2.	a)	Describe th	e flexible stor	age sch		ing matrix as	Compa	ct Arrays	61			
	b)	Explain the	algorithm for	Gauss 6	elimination m	nethod			61			
	,	·	· ·		UNIT-II							
3.		Form the ZI	BUS for the gi	iven net		tions. (Take	bus-1 as	s Reference)				
						Mutual impedence						
		Element	Self	impede	nce		uu iiip	denee				
			Bus no ()	p-q)	Z _{pq pq}	Bus no	(m-n)	Z _{pq mn}				
		1	1-2(a))	0.5							
		2	1-3		0.5	1-2(a	a)	0.3				
		3	3-4	1	0.25	1.26	2)	0.4				
		5	1-2 (b)	0.6	1-2(a)	0.4	12			
					OR		-					
4.	a)		_{US} is modified he reference		branch of in	•		d from a new	81			
	b)	What are th	e approximat	ions ma	de in impeda	ance diagran	n		41			
					UNIT-III							
5.		Develop the draw the flo	•	uations	suitable for s	solving fast d	lecouple	d method and	121			
6	۵)	Driefly evol	ain faat daaa	مم اممامی	OR	thad			6			
0.	a)											
	b)	Explain sen	sitivity factors	s for P –	V bus adjus	tment			6			
7.		Derive the	equations for	total fau	UNIT-IV It current an	│ d bus voltage	e for the	following				
		faults through fault impedance ZF i) LLG FAULT ii) LL fault										
		,	•		OR							
8.		•	formation of bus system a	•			•	•	121			
					UNIT-V							
9.	a)	Explain the Eulers method of transient stability analysis										
	b)	Explain wha	at is transient	stabilitv	problem				41			
	,				OR							

system using classical synchronous machine model.

10.

Describe step by step algorithm for solving stability analysis of multi machine

12M

Hall ⁻	Ticke	et Number :	R-19									
Code	: 191	B212T										
\sim	۱.Te	ch. I Semester Regular & Supplementary Examinations July 2	021									
		Advanced Power System Protection										
M	A XE	(Electrical Power Systems) Marks: 60 Time: 3 H	OURS									
	-	ny five full questions by choosing one question from each unit (5x12=										
		UNIT-I										
1.	a)	Explain about two input amplitude comparator										
	b)	Explain opposed voltage type of rectifier bridge comparator										
		OR										
2.		Explain the duality between amplitude and phase comparator	12M									
		UNIT-II										
3.	a)	Explain coincidence circuit type block spice phase comparator	6M									
	b)	Explain the principle of static inverse definite time over current relay	6M									
		OR										
4.	a)	Explain the principle of static definite time over current relay	6M									
	b)	Explain the techniques to measure period of coincidence in phase comparat	ors 6M									
		UNIT-III										
5.	a)	Explain Duo bias transformer differential protection	6M									
	b)	, , , , , , , , , , , , , , , , , , , ,										
		OR										
6.	a)	Explain the significance of angle impedance relay sampling comparate										
	b)	Discuss the problems involved in the operation of differential relay	and 6M									
		suggest respective remedies UNIT-IV	OIVI									
7			4014									
7.		Explain the principle of out of step tripping and blocking relays OR	12M									
8.	a)	Explain the effect of line length and source impedance on the perform	ance									
		of impedance relays	6M									
	b)	Explain the concept of power swings	6M									
		UNIT-V										
9.	a)	Explain the block diagram of the Microprocessors based Reactance rela	y 6M									
	b)	Explain the block diagram of the Microprocessors based impedance re	elay 6M									
		OR										

10. a) Explain the generalized mathematical expression for distance relay

b) Explain the concept of realization of offset MHO characteristics

6M

6M

Hall Ticket Number :					

Code: 19B21AT

R-19

M.Tech. I Semester Regular Examinations July 2021

HVDC Transmission

(Electrical Power Systems) Max. Marks: 60 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)CO ΒI Marks UNIT-I 1. a) Explain in detail, the comparison of AC and DC transmission. CO₁ 6M L2 b) With the help of a neat schematic diagram of a typical HVDC converter station explain the functions of various components available. CO1 6M L2 OR 2. a) Define pulse number and justify how the higher pulse number will improve the converter operation. CO₁ 6M 13 Enumerate the disadvantages of HVAC and justify how the drawbacks can be overcome in HVDC transmission system. 6M CO1 L2 UNIT-II For a 3- , 6 pulse Graetz's circuit, draw the timing diagram considering overlap 3. angle is less than 60° and without overlap for the following: a) Voltage across load, 12M CO2 L3 b) Voltage across any two pair of conduction values. OR 4. a) What is the reason for using star-star and star-delta transformer configurations for 12 pulse converter? 6M CO2 L4 b) A three-phase bridge inverter has a commutating reactance of 150 Ohms. The current and voltage at the DC side are 1053 A and 285 kV respectively. The AC line voltage is 345 kV. Determine the extinction angle and the overlap angle. CO₂ **UNIT-III** 5. a) Enumerate the relative merits and demerits of constant current control and constant voltage control of HVDC link. CO2 L2 6M b) Explain the necessity of "VDCOL" control in a HVDC link with the help of VI characteristics. CO2 L3 6M OR 6. a) What is meant by current margin between two stations in a HVDC link? Why is the inverter station, operated as a constant voltage controller under normal conditions? 6M CO2 L3 b) Draw the complete converter control characteristics and explain the principle of power control in a DC link. 6M CO2 L2 **UNIT-IV** 7. a) Explain about the commutation failure in an inverter and enumerate the effects of failure. CO₃ 6M 12 b) What do you mean by commutation and what are the various effects of commutation failure? 6M CO3 L2 OR 8. a) Explain in detail about Arc through faults in a converter station. CO₃ L2 6M b) Explain in detail about control and protection level in HVDC. CO₃ 6M L2 UNIT-V 9. a) Why Reactive power control is required for HVDC stations? Discuss about conventional control strategies for Reactive power control in HVDC link. CO₄ 6M 12 b) Explain in detail, the power flow analysis in a HVDC link. CO4 6M L2 10. a) Discuss how shunt capacitors can be used to meet reactive power requirement CO4 of a converter. 6M L3 Discuss about various types of AC filters employed in HVDC systems for b) harmonic suppression. 6M CO4 L3

	Т										
Hall Ticket N	Number :								Γ		10
Code: 19BE	11T									K-	19
M.Tech	n. I Seme		•			•			tions	July 20)21
					dology All Bran			K			
Max. Mc Answer	arks: 60 all five unit				estion fro			nit (5		me: 3 H = 60 Mai	
					UNIT-I						
1. Exp	lain any two	o multiva	riate tecl	nnique	s used in	data	anal	ysis?			
					OR						
2. Eluc	cidate the v	arious er	rors in s	electing	g the res	earch	prob	lem.			
					UNIT-II						
	cidate the vood review a		urces of	collec		ew of	literat	ture. <i>i</i>	Also e	xplain h	ow to write
					OR						
4. Eluc	cidate the fo	ormat of r	esearch	propo	sal.						
5. Writ	e a short n	ote on Pa	atent De	sian T	UNIT-III	d Con	wriah	t			
J. VVIII	c a short in	ole on re	itorit, Do	Joigii, i	OR	<i>1</i>	, y i i gi i	ι.			
6. Exp	lain the inte	ernationa	l scenari	o on P							
7. Eluc	cidate the P	atent rigl	nts.		UNIT-IV						
		J			OR						
8. Exp	lain Licensi	ing and T	ransfer ⁻	Techno		Paten	t.				
9. Eluc	cidate the p	atent info	ormation	and da	UNIT-V atabases OR						
40 Fl	sidata tha	میر طور دوا	onmost.	ام ال							
10. Eluc	cidate the n	ew devel	opments	s in 126	7						

Code: 19B21FT

reduced?

M.Tech. I Semester Regular & Supplementary Examinations July 2021

	Μ.	recn. I semester Regular & Supplementary Examinations July 2021	
		Reactive Power Compensation and Management (Electrical Power Systems)	
Μ	ax.	Marks: 60 Time: 3 Hours	
An	swe	r any five questions by choosing one question from each unit (5x12=60 Marks *********)
		UNIT-I	
1.	a)	Explain about inductive approximate biasing.	6M
	b)	Explain about reactive power characteristics	6M
		OR	
2.	a)	Illustrate with an example, load compensator as a power factor correction of un symmetrical loads.	6M
	b)	Clearly discuss the various type of loads requiring compensation and state the specification for load compensation.	6M
		UNIT-II	
3.	a)	Discuss the types of compensation in transmission systems.	6M
	b)	What is the need of series capacitor compensation in transmission systems? Explain how it improves the performance of the power system during disturbances?	6M
		OR	
4.	a)	Explain the characteristic time periods in transmission system in detail.	8M
	b)	Explain the concept of dynamic shunt compensation in transmission systems. UNIT-III	4M
5.		Explain the KVAR based tariffs and also discuss the penalties for voltage flickers and harmonic voltage levels in detail.	12M
		OR	
6.	a)	What are the sources of harmonics and effect of harmonics on electrical equipment's?	6M
	b)	Explain the basic concepts of transmission benefits in power system.	6M
		UNIT-IV	
7.	a)	Explain the deciding factor for selection of capacitors for reactive power management at the user side.	6M
	b)	Explain about the system losses in a distribution system.	6M
		OR	
8.	a)	Discuss about KVAr requirements for domestic appliances.	6M
	b)	Explain about economic planning of capacitor placement. UNIT-V	6M
9.	a)	Discuss the reactive power control requirements in electrical traction systems.	6M
	b)	Explain the typical layouts of electrical traction systems with neat diagrams.	6M
		OR	
10.	a)	Explain the functions of distribution transformers in Electric arc furnace industries	6M
	b)	How does voltage flickers occur in electric arc furnaces? Explain how those can be	01.4

6M