<u> </u>	4-	e: 20DF14T	R-20		
CO	ae	M.C.A. I Semester Regular Examinations July 2021			
		Computer Organization			
M	ax	· •	ne: 3 Ho	ours	
An	SW	ver any five full questions by choosing one question from each unit (5x12 =	= 60 Mc	arks)	
		*****	Morko	<u> </u>	
		UNIT-I	Marks	CO	
1.		Simplify the Boolean function F together with the don't care condition d in			
		product of sums form			
		F(w,x,y,z) = (0,1,2,3,7,8,10)			
		d(w,x,y,z) = (5,6,11,15)	12M	CO1	
		OR			
2. a)	Explain the process of representing Signed and unsigned numbers in digital			
		Computer.	6M	CO1	
b)	What is excitation table? Explain about JK flip-flop with its excitation table.	6M	CO1	
•		UNIT-II			
3.		With a block diagram of associative memory, explain in detail about hardware	1214	CO2	
		organization. OR		002	
4.		Explain briefly about memory hierarchy.	12M	CO2	
••			12.01	002	
		UNIT–III			
5.		Explain different instruction formats in detail.	12M	CO3	
		OR			
6.		Draw and explain the Intel 8086 CPU Architecture.	12M	CO2	
		UNIT–IV			
7. a)	Explain about data manipulation instructions with examples.	6M	CO3	
b)	Explain about shift instructions in detail.	6M	CO3	
		OR			
8.		Write short notes on Interrupts and Assembler Directives	12M	CO2	
•		UNIT-V	1014		
9.		What is control memory? Explain micro programmed control organization.	12M	CO2	
`	、	OR	~~	005	
). a	,	Explain DMA transfer in a computer system. Discuss asynchronous data transfer in detail.	6M	CO2 CO2	
b		Liegues asynchronous data transfor in datail	6M	<u></u>	

	Hal	I Ticket Number :																
L	Cod	le: 20DF12T													R- 2	20		
	CUU	M.C.A	A. I S	em	este	er Re	aulo	ar Ex	am	inat	ions	เป็นไ	v 202	1				
							•	and					,					
		ıx. Marks: 60 wer any five full qu					ng or			•			unit (ime: 3 2 = 60			
															N	/larks	со	BL
						ι	JNIT-	-1]									
1.	a)	Write a pseudocod	e to r	epre	sent	an ar	ray a	is an	absti	act d	lata t	ype.				6M	CO1	L3
	b)	Which data structur	re is i	used	to pe	erforn		ursio	n? W	'hy?						6M	CO1	L2
							OR				_							
2.	a)	What is algorithm?	Wha	t are	the	comp	oner	nts ge	enera	Ily re	quire	e for a	an algo	orith	m?	6M	001	10
	b)	Explain. Discuss briefly abo	ut dif	foror	nt not	ation	e of t	imo c	omn	lovitu						6M	CO1	L2
	D)	Discuss briefly abo	utun				NIT-			Бліт	•					OIVI	CO1	L4
3.	a)	Discuss in detail ab	out s	singly	/ like	d list	and i	ts op	eratio	ons.						6M	CO2	L4
	b)	Explain array imple	ment	atior	n of s	tack.										6M	CO2	L4
							OR											
4.	a)	Define stacks and (Queu	es w	rith ai	n exa	mple	and	their	appli	catio	ns.				6M	CO2	L1
	b)	Explain linked list in	npler	nent	ation	of Q	ueue	s.	-							6M	CO2	L4
							NIT-											
5.	,	Write the algorithm	•			•						binar	y tree.			6M	CO3	L3
	b)	Explain briefly abou	ut seo	quent	tial a	nd ind		d file	orga	nizati	ons.					6M	CO3	L4
~	``						OR		.,									
6.	,	, ,	•									ples.				6M		L4
	b)	Discuss in detail ab	out v	ariol	JS CO				n tec	nniqu	les.					6M	CO3	L2
7	2)	What are the differ	ont re	nroc	onto		NIT-		 .2 Ev	nlain						6M	CO 4	10
7.	a) b)	What are the difference The keys 24, 39, 37		•				• •		•		no or	dor aiv	n)		OIVI	CO4	L2
	0)	into an initially emp									•		•	CIIJ		6M	CO4	L3
							OR											
8.	a)	What is Binary Sea 47, 55, 23, 17, 39,											-					
		traversal.	, .	e, e,	,	, .	0, 20	•					о но р.			6M	CO4	L3
	b)	What is MST? Expl MST.	ain w	/ith s	uitab	le ex	ampl	e of t	he Ki	ruska	l's al	goritl	nm to f	ind (out	6M	CO4	L4
					[U	NIT-	-V]								001	
9.	a)	Write a program to	•		•	ck so	rt. G	ive a			-		•	arra	у			
		of elements using (6M	CO5	L3
	b)	Write a program for	r bina	iry se	earch	and		late	the ti	me c	ompl	exity	•			6M	CO5	L3
10	-)	Mito about all for			ا م		OR ort fo	- ما د م	follo		dete	0.C [±]						
10.	a)	Write about differer 47, 78, 81, 52, 50, 8	-			•				•			7 20			6M	005	1.0
	b)	Write the Fibonacci												rith	m	6M	CO5 CO5	L3 L3
	0)		Juit	n aig	,01111			ND**		0011	PICAI	y or t	and ange				005	LJ

Page 1 of 1

	Hall Ticket Number :		٦	
	Code: 20DC11T	20		
	M.C.A. I Semester Regular Examinations July 2021			
	Probability and Statistics Max. Marks: 60 Time: Answer any five full questions by choosing one question from each unit (5x12 = 6 *********	3 Hou 0 Marks		
		Marks	со	BL
4	UNIT-I			
1.	There are 12 cards numbered 1 to 12 in a box, if two cards are selected, what is the probability that sum is odd (i) With replacement (ii) without replacement	12M	CO1	L2
	OR			
2.	A sample of 4 items is selected at random from a box containing 12 items of which 5 are defective. Find the expected number E of defective items.	12M	CO1	L2
	UNIT–II			
3.	Fit a binomial distribution to the following data.			
	x 0 1 2 3 4 5			
	Frequency(f) 2 14 20 34 22 8	12M	CO2	L3
	OR			
4.				
	diamonds using normal distribution.	12M	CO2	L3
5.	UNIT-III			
5.	The mean height of students in a college is 155cms and standard deviation is 15. What is the probability that the mean weight of 36 students is less tha157 cms.	12M	CO3	L2
	OR	12.01	005	LZ
6.				
0.	which the following sample was taken 15, 17, 10, 18, 16, 9, 7, 11, 13, and 14.	12M	CO3	L2
7.	A random samples of 10 bags of pesticides are taken whose weights are 50, 49, 52,			
	44, 45, 48, 46, 45, 49 and 45 (in kgs). Test whether the average packing can be			
	taken to be 50 kgs.	12M	CO4	L4
	OR			
8.	Fit a Poisson distribution to the following data and for its goodness of fit at level of significance 0.05 level of significance			
	x 0 1 2 3 4			
	f 419 352 154 56 19	12M	CO4	L4
_	UNIT–V			
9.	 The mean rate of arrival of planes at an airport during the peak period is 20 per hour. The number of arrivals in any hour follows a Poisson distribution. When there is congestion the planes are forced to fly over the field the stack awaiting the landing of other planes that arrived earlier. 60 planes per hour can land in good weather and 30 planes per hour can land in bad weather. (a) How many planes would be flying over the field in the stack on an average in good 			
	weather and in bad weather?			
	(b) How long a plane would be in the stack in the process of landing in good and bad			
	weather?	12M	CO5	L3
10.	 OR Customers arrive at a one window drive-in bank according to a Poisson distribution with mean 10 per hour. Service time per customer is exponential with mean 5 minutes. The car space in front of the window including that for the serviced can accommodate a maximum of 3 cars. Other cars can wait outside the space. (a) What is the probability that an arriving customer can drive directly to the space in front of the window? 			
	(b) What is the probability that an arriving customer will have to wait outside the indicated space?			
	(c) How long is arriving customer expected to wait before starting service.	12M	CO5	L3

<u> </u>		R-20		
Co	de: 20DF11T M.C.A. I Semester Regular Examinations July 2021			
	Mathematical Foundations of Computer Science			
м	-	ne: 3 H	ours	
	swer any five full questions by choosing one question from each unit (5x12 :			

		Marks	СО	B
	UNIT–I			
a)	Explain Conjunction, Disjunction and Conditional Proposition with example	6M	1	ļ
b)	Obtain disjunctive normal form of $P \vee (\sim P (Q \vee (Q \sim R)))$	6M	1	
	OR			
a)	If p, q and r be the propositions			
	P : you have the flee			
	q : you miss the final examination			
	r: you pass the course.			
	Write the following propositions into statement form.			
	(i) ~p r (ii) p q r (iii) (p ~r) (q ~r) (iv) (p q) (~q r).	6M	1	
b)	Show that RVS is valid conclusion from the premises:			
	C D, (C D) ~H , ~H (A ~B), (A ~B) R S	6M	1	I
	UNIT–II			
a)	Define a Relation? Explain Reflexive, Symmetric and Transitive relations with			
	an example	6M	2	L1,
b)				
	divides b. Prove that R is a partial order on A. Draw the Hasse diagram for this		•	
	relation.	6M	2	L1,
	OR			
a)				
	Let $X = \{ \text{ ball, bed, dog, let, egg} \}$ and let the relation R be given by $R = \{ x, y \in X \}$ and $R = \{ x, y \in X \}$ and $R = \{ x, y \in X \}$ and $R = \{ x, y \in X \}$.			
	$R = \{ \langle x, y \rangle / x, y \in X \ x R y \text{ if } x \text{ and } y \text{ contain some common letter} \}$ and also draw maximal compatibility block for the given relation.	6M	2	L1,
b)		0101	2	сı,
0)	i) Totally ordered set ii) Lattice	6M	2	I
		0101	2	
a)				
u)	many of these, all four A's are together? How many of them begin with S?	6M	3	L3,
b)				
,	how many ways can she invite them in the following situations			
	i) There is no restrictions on the choice			
	ii) Two particular persons will not attend separately			
	iii) Two persons will not attend together.	6M	3	l
	OR			
a)	Determine the number of positive integers 100 which are divisible by 3 or 7?	6M	3	
b)	Show that if any 30 dictionaries in a library contain a total of 61,327 pages,			
~ /				

		UNIT-IV			
7.	a)	Find the generating function for the sequence 0^2 , 1^2 , 2^2 , 3^2 , 4^2 ,	6M	4	L4
	b)	The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use a recurrence relation to determine the number of virus affected files in the system after one day.	6M	4	L5
		OR			
8.		Find the generating function for the recurrence relation $a_{n+1} - a_n = n^2$, $n = 0$			
		and $a_0 = 1$. Hence solve it.	12M	4	L3
		UNIT–V			
9.		Explain the following			
		i) Complete Graph ii) Complete Bipartite Graph iii) Planar Graph.			
		iv) Euler's graph	12M	5	L2
		OR			
10.	a)	What is graph coloring? What is chromatic number? Explain them with suitable			
		examples.	6M	5	L1,L2
	b)	Explain kruskal's algorithm with an example	6M	5	L2
		****END****			

	Hal	I Ticket Number :			
			R-20]
C	-od	e: 20DF13T M.C.A. I Semester Regular Examinations July 2021			_
		Relational Database Management Systems			
	-	x. Marks: 60 Tin	ne: 3 H		
	Ansv	wer any five full questions by choosing one question from each unit (5x12	= 60 M	arks)	
			Marks	со	В
		UNIT–I			
1.	a)	With a neat diagram, explain the architecture of a DBMS?	6M	1	L
	b)	What is a view? How can it be created? Explain with an example?	6M	1	L
		OR			
2.	a)	Define an entity and attribute. Explain the different types of attributes that			
	L)	occur in an ER - diagram model with an example?	6M	1	L
	b)	Draw an ER-diagram for a Bank database schema with at least five entity types. Also specify primary key and structural constraints?	6M	1	L
			om	•	-
		UNIT–II			
3.	a)	Discuss about tuple relational calculus?	6M	2	L
	b)	Discuss in detail the operators SELECT, PROJECT with suitable examples?	6M	2	L
		OR			
4.		Explain in detail about Query by example (QBE)?	12M	2	L
F	a)	UNIT-III	CM.	2	
5.	a) b)	Differentiate between independent and correlated nested queries? Discuss about integrity constraints in detail?	6M 6M	3 3	L
	0)	OR	OIVI	5	L
6.	a)	What is a normal form? Explain about various normal forms with examples?	6M	3	L
	b)	Explain the role of functional dependencies in normalization with suitable		-	_
	,	examples?	6M	3	L
		UNIT–IV			_
7.	a)	What is transaction? Mention the desirable properties of a transaction?	6M	4	L
	b)	Explain in detail about timestamp based concurrency control techniques?	6M	4	L
8.		OR Discuss in detail about log-based recovery system?	12M	4	L
0.		Discuss in detail about log-based recovery system?	12111	4	L
		UNIT-V			
9.	a)	Distinguish between Primary and Secondary indexing?	6M	5	L
	b)	Write about indexed sequential files with advantages and disadvantages?	6M	5	L
		OR			
0.	a)	By considering relevant example, show insertion and deletion operations on a			
		B+ Tree?	6M	5	L
	b)	Discuss about Hash-Based Indexing in detail?	6M	5	L
		****END****			

	Н	all Ticket Number :			
			R-20		
		M.C.A. I Semester Regular Examinations July 2021			
		Technical Communication			
		swer any five full questions by choosing one question from each unit ($5x12 = 6$: 3 Hou 60 Marl		
		*******	Marks	со	BL
1.		UNIT–I Define Communication and explain the process of Communication. OR	12M	CO1	L3
2.	a) b)	Elucidate the concept of communication with principles and strategies. "Response of the receiver is feedback" - Explain the feedback mechanism with	6M	CO1	L3
	-,	examples.	6M	CO1	L3
		UNIT–II			
3.		"Effective Non-Verbal communication is the base of personal & professional development" – Elucidate with examples.	12M	CO2	L2
4	a)	OR Give a detailed account of Kinesics in Non-Verbal Elements, with suitable examples.	6M	CO2	12
	b)	What are the tips for effective Oral Presentations?	6M	CO2	
	-,	UNIT–III	•	002	
5.	a)	Describe the strategies of Effective Presentation.	6M	CO4	L2
	b)	Write a complaint letter to P&G Company on a received product which ordered one			
		item but received another, failed to have a warranty honored. You want to write	бM	CO4	10
		letter of complaint to solve these problems. OR	OIVI	CO4	LZ
6.	a)	Imagine you are a manager of a company; one of your team members had done			
		improper communication with fellow teammates. You have to suspend him/her			
		based on his/her under company disciplinary action. Write a suspension memo with proper reasons.	6M	CO4	12
	b)	Write the structure & styles of Memos.		CO4	
	0)	UNIT-IV	OW	004	LZ
7.	a)	List out the types of Reports and mention its significance.	6M	CO5	L3
	b)	A fire accident took place in a unit of your company which damaged the machinery	•	000	
		costing Rs. 2 lakh. You are asked to submit a detailed Report on the accident by			
		analyzing the incident and suggest recommendations.	6M	CO5	L3
8.	a)	OR Imagine you are a coordinator of the blood donation camp which was recently held			
0.	u)	in your campus regarding that you have to prepare a report by using needy			
		credentials and submit your district collector the same.	6M	CO5	L3
	b)	Elucidate the objectives and characteristics of Report.	6M	CO5	L3
9.	a)	Dress code and body language play a vital role in successful Interview – Explain.	6M	CO3	L3
	b)	Write a note on the following:			
		I. HR interview II. Telephone interview	6M	000	12
		OR		CO3	L3
10.	a)	Group Discussion is a very important process for campus recruitment – Elucidate.	6M	CO3	L3
	b)	Draft a sample Resume of your profile as per the standard Resume Format.	6M	CO3	L3
		END		. .	