Code: 1GC14

B.Tech. I Year Supplementary Examinations October 2020 Mathematics-I

(Common to All Branches)
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)
Max. Marks: 70

1. a) Solve $x \log x \frac{d y}{d x}+y=\log x^{2}$. 7M
b) If the temperature of the air is $30^{\circ} \mathrm{C}$, and the substance cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes, find when the temperature will be $40^{\circ} \mathrm{C}$?
2. Solve $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\left(1-e^{x}\right)^{2}$
3. a) Verify Rolle's theorem for $f(x)=(x+2)^{3}(x-3)^{4}$ in $(-2,3)$.
b) Verify Lagrange's mean value theorem for $f(x)=\log _{e}^{x}$ in $[1, e]$.
4. a) Trace the curve $y^{2}(2 a-x)=x^{3}$ 7M
b) Trace the curve $x^{3}+y^{3}=3 a x y$ 7M
5. a) Evaluate $\int_{0}^{1} \int_{0}^{x} e^{\frac{x}{y}} d x d y$
b) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y$
6. a) Find the Laplace transform of $e^{2 t}+4 t^{3}-2 \sin 3 t+3 \cos 4 t-5 \sinh t$ 7M
b) Find the Laplace transform of $e^{-3 t}(2 \cos 5 t-3 \sin 5 t+2 t)$ 7M
7. Solve $y^{11}-3 y^{1}+2 y=e^{3 t}$ when $y(0)=1, y^{1}(0)=0$.
8. Evaluate the line integral $\int_{C}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the square formed by the lines $x= \pm 1, y= \pm 1$.

B.Tech. I Year Supplementary Examinations October 2020
 Engineering Mechanics

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. A cable ABCD supports two loads 1 kN and 2 kN at points B and C respectively. Determine the tension in each portion of the cable if the portion $B C$ remains horizontal. Also, determine the distance ' x ' for which equilibrium can be maintained. Refer fig.

2. A beam AC hinged at A is held in a horizontal position by a cable attached at end C and passing over a smooth pulley as shown in fig. The free end of the cable is connected to a weight 2000N that rests on the beam. Determine the reaction at A and tension in the cable. Neglect the weight of the beam.

3. Compute the axial forces in the members of the plane truss as shown in fig.

4. a) Define the following terms:
i). Angle of friction ii). Angle of repose
b) State the laws of solid friction.
5. Find the centroid of the I-section shown in fig.

6. State and prove the parallel axis theorem.
7. A flywheel is rotating at 200 rpm and after 10 seconds it is rotating at 160 rpm . If the retardation is uniform, determine the number of revolutions made by the flywheel before it comes to rest from the speed of 200rpm.
8. Two weights 800 N and 200 N are connected by a thread and they move along a rough horizontal plane under the action of a force of 400 N applied to the 800 N weight as shown in fig. The coefficient of friction between the sliding surface of the weights and the plane is 0.3 . Using D'Alembert's principle determine the acceleration of the weight and tension in the thread.

