Hall Ticket Number :							
]	R-14

Code: 4G513

B.Tech. I Year Supplementary Examinations May / June 2019

Engineering Drawing

(Common to EEE, ECE, CSE and IT)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

1. The foci of an ellipse are 90mm apart and the minor axis is 65mmlong. Draw the ellipse. Draw a tangent to it at a point on it 15mm from major axis.

OR

2. Draw a hypocycloid of a circle of 40mm dia. Which rolls inside another circle of 160mm dia. Draw a tangent to it at a point 65mm from the center of the directing circle?

UNIT-II

3. One end of a line 75mm long is 20mm above H.P. and 25mm in front of V.P. The line is inclined at 30^o to H.P. and the top view makes an angle of 45^o with XY. Draw the projections of the line and find its true inclination with V.P.

OR

4. A line AB is 75mm long. A is 50mm in front of V.P. and 15mm above H.P. B is 15mm in front of V.P. Top view of AB is 50mm long. Draw its projections and determine its inclinations with reference planes.

UNIT-III

5. A rectangular plane of size 60 mm x30mm has its shorter side on the H.P and inclined at 30^o to V.P. Draw the projections of the plane, if its surface is inclined at 45^o to H.P.

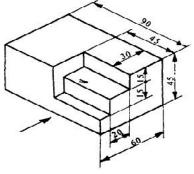
OR

6. Draw the projections of a regular pentagon of 30mm side with its surface is making an angle of 30^o with H.P. One of the sides of the pentagon is lying on the H.P and perpendicular to V.P.

UNIT–IV

7. Draw the projections of a cone of base 40mm and height 65 mm when it is lying on a point of the base on H.P, with its axis inclined at 30^o to H.P and parallel to V.P.

OR


8. Draw the projections of a hexagonal prism of base 25mm side and axis 60mm long, when it is resting on one of its corners of the base on H.P. The axis of the solid is inclined at 45^o to H.P.

UNIT-V

9. Draw the isometric view of a cylinder of base diameter 30mm and height is 70mm, when its axis is perpendicular to H.P.

OR

10. The Figure shows an object. Draw its (i) Front view (ii) Top view (iii) Side view. Assume all the dimensions are in 'mm '.

Hall Tick	et Number :												
Code: 4G	C12	1 1	<u>l</u>		1	1]	1		L	R-14		
UUU U, 70	B.Tech. I Year Supplementary Examinations May 2019												
	Engineering Physics												
	(Common to All Branches) Max. Marks: 70 Time: 3 Hours												
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)												Jrs	
				U	IIT–I								
 a) Explain the interference due to thin films and draw the conditions for constructive and destructive interference. 													
b) Distinguish between interference and diffraction of light.													
OR													
2. Distinguish between gas and solid state lasers with examples.													
	F our la institute de marce			UN	IIT–II								
3. a)	Explain the terms (i) Screw and edge dislocations (ii) Burger's vector.												
b)													
OR													
4. a)	With neat diagrams and examples explain the seven crystal systems.												
b)	Derive Bragg's la	Derive Bragg's law.											
				UN	IT–II	I							
5. a)	What are matter	waves?	' Explai	n thei	r pro	oertie	es.						
b)	State and explair	de-Bro	oglie's h	iypotł	nesis	of m	atter	wave	es.				
					OR								
6.	Discuss with suit				•	essio	ons, t	he K	írono	g-Penr	ney model for		
	the energies of a	an elec			.aı. I T–I V	,							
7. a)	Discuss with h	elp of	a ne				he h	iyste	resis	qool	observed in		
	ferromagnetic ma	•			0	,		,		I			
b)	Classify the mag	netic m	aterials	into s	soft a	nd ha	ard ba	ased	on h	ysteres	sis loop.		
					OR								
8.	Describe differen	••		•						of thei	r spin dipole		
	alignment and its	tempe	rature o	-	IIT-V		Texa	mpie	:5.				
9.	Describe the baproperties.	asic pr	inciples				erials	s ca	using	the o	change in its		
					OR								
10. a)	Prove that every	super	conduc	ting			xhibi	t the	dian	nagneti	ic property.		
L \	Evoloin DC and		onhoo	o offo	oto o	nd ~	ontic	n I V	/ ohe	vractori	ictics		

b) Explain DC and AC Josephson effects and mention I-V characteristics.

Hall	Tick	et Number :											
Code							<u> </u>		<u> </u>]	R-14
0040		B.Tech. I y	ear	Sup	ple			•			Мау	/ / Jui	ne 2019
									I tics-	l ches)			
Мс		1arks: 70			-					-			Time: 3 Hours
	Ans	wer all five ur	nits b	y ch	oosir	ng o	ne q	uesti *****	on fro **	m eac	h unit	(5 x 1	4 = 70 Marks)
		4.					ι	JNIT-	-1				
1.	a)	Solve $x \frac{dy}{dx} +$	y = 10	og x									
	b)	Solve $y'' - y'$	′-2y	v = 3e	2 <i>x</i> ,	y(0)	= 0,	y' (0)	=-2				
0	-)							OR				(.	X
2.	a)				ajecto	ories	of th	ne fa	mily of	cardio	ids r =	=a(1-)	\cos_w), where
	b)	'a' is the para				x							
	D)	Solve $(D^2 - 1)$) y =	x sm	x + e	2		INIT-	.11				
3.	a)	Verify Lagran	ge's	mear	n val	ue th	L			$=x^3-x$	x^2-5x	(+3 in	[0,4]
	b)	Find the mini											
							-	OR		ç			
4.	a)	Verify Rolle's	theo	orem f	for th	ie fur	nctior	ו log	$\int \frac{x^2}{x^2}$	$\frac{ab}{1}$ in	[a,b]	, a > 0,	b > 0.
										, T			
	b)	If $x + y + z = i$	и, у +	$z = \iota$	ıv, z :	= uvv	v, the	en ev	aluate	$\frac{\partial(x,y)}{\partial(u,y)}$	$\frac{z}{w}$		
							U	NIT–		O(u,v,	~)		
5.	a)	Trace the cur	ve y ²	$a^2(a-$	x) =	x^3 (a > 0)					
	b)	Evaluate $\int_{0}^{5} \int_{0}^{x^2}$	$r(r^2)$	$\pm v^2$	drd	,							
	D)		л (л	ту,	ули	/							
6.	a)	Trace the cur	ver	=a(1)	+co	s.,)		OR					
		Evaluate ∭(,	nosi	tive c	uadra	nt for w	hich x	x + y < 1	1
	,		л ⁻ .	у јал	ay n			NIT-				<i>i</i> y <u>-</u>	1
7.	a)	Evaluate L	$e^{2t} + e^{2t}$	$4t^{3}-$	2 sin	3t + 3							
	b)	Find $L\{f(t)\}$	} , w	here	f(t)is a	a per	iodic	funct	ion of p	period	2f a	nd it is given
		by $f(t) = \begin{cases} si \\ 0 \end{cases}$	in t, 0	< <i>t</i> <	f								
		(0	<i>,f</i>	< <i>t</i> <	: 2f			OR					
8.	a)	Find the Lapl	ace t	ransf	orm	of e ⁻	^{-3t} (20		-3sin	(5t)			
	b)	Find the inve											
	0)		ISE L	apiac	eua	11510)			
9.	a)	Find the and	iles t	hetwe	en t	he s	L	$\frac{ \mathbf{N} \mathbf{T}-\mathbf{r} }{ \mathbf{r} ^2}$		$-7^2 = 9$	and	$z = r^2$	$+y^2-3$ at the
	,	point $(2, -1, 2)$					anac		ı yı	ζ, — γ	unu	$\chi = \pi$	
	b)	$ If \overline{f} = (5xy - 6) $	$(5x^2)\overline{i}$	+(2)	v – 4.	$x)\overline{j}$,	eval	uate	$\int \overline{f} dt$	r along	the c	urve 'o	c' in <i>xy</i> -plane
		$y = x^3$ from (1							c				
								OR					
10.		(i) If $\overline{f} = (x + x)$				/					, find	р.	
		(ii) Find curl	f w	here	f = d	grad	$(x^3 +$		$z^3 - 3$	xyz).			

Hall T	ick	et Number :
		R-14
		B.Tech. I Year Supplementary Examinations May / June 2019 Mathematical Methods (Common to CSE & IT) Time: 3 Hour
		er all five units by choosing one question from each unit (5 x 14 = 70 Marks)
1.	a)	UNIT-I Solve the system of equations $x+3y+2z=0$, $2x-y+3z=0$, $3x-5y+4z=0$, $x+17y+4z=0$.
	b)	Find the Eigen values and the corresponding Eigen vectors of $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$
2.	a)	OR Discuss for what values of the simultaneous equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + 3z = -$; have (i) no solution (ii) a unique solution (iii) an infinite number of solutions
	b)	Verify Cayley Hamilton theorem for the matrix $\begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$.
3.	a)	Show that $A = \begin{bmatrix} -3i & 2+i \\ -2+i & -i \end{bmatrix}$ is a Skew -Hermitian matrix.
	b)	Prove that $\frac{1}{2}\begin{bmatrix} 1+i & -1+i\\ 1+i & 1-i \end{bmatrix}$ is a unitary matrix OR
4.		Find the eigen values and eigen vector for A= $\begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ and show that A is a
		skew Hermitian matrix.
5.	a) b)	Find a real root of $x^3 - 5x + 3 = 0$ using bisection method Find out the root of the equation $x^3 - x - 4 = 0$ by regula-falsi method.
6.	á)	OR Find the polynomial $f(x)$ by using Lagrange's interpolation formula and
		x 0 1 2 5 f(x) 2 3 12 147
7.		UNIT-IV Use Runge-Kutta method to evaluate $y(0.1)$ find $y(0.2)$ given that $y' = x + y, y(0) = 1$
		OR
8.		Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ taking using $h = 0.1$ by i) Trapezoidal rule and Simpson's $\frac{1}{3}$
		rule (ii) Using Simpson's $\frac{3}{8}$ rule
9.		UNIT-V Find the Fourier series for the function $f(x) = x^2$ in the interval $(0, 2f)$.
10.		OR Find the Fourier series expansion of $f(x) = x \cos x$ in $(0, 2f)$

Hall Ticket Number :						[
						R-14

Code: 4GC13

B.Tech. I Year Supplementary Examinations May/June 2019

Engineering Chemistry

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- 1. a) What is hardness of water? Mention its units?
 - b) Describe the desalination process by reverse osmosis with a neat sketch.

OR

- 2. a) Write a note on internal treatment?
 - b) What is break point chlorination? State its significance?

UNIT–II

- 3. a) Differentiate between cathodic protection and anodic protection?
 - b) what is the EMF Of the following cell at $25^{\circ}C$ Zn(s)/Zn⁺⁺(0.1M)//Cu⁺⁺(1.75M)/Cu(s). The standard emf of the cell is 1.1V.

OR

- 4. a) What is electrochemical corrosion? Explain electrochemical theory of corrosion.
 - b) How is corrosion prevented by sacrificial anodic protection and cathodic protection? Explain.

UNIT-III

5. What are silicones? Give preparation, properties and applications of silicones.

OR

6. Describe the preparation, properties and uses of(i) Bakelite (ii) nylon 6,6

UNIT–IV

7. Give an account of the different methods used for the synthesis of petrol

OR

8. A Sample was found to have the following percentage composition

C = 75%, H = 5.2%, O = 12.1%, N = 3.2%, ash = 4.5%.

- (i) calculate the weight &volume of air required of combustion of 1 kg of coal
- (ii) calculate the higher calorific value and lower calorific value of coal sample

UNIT–V

9. What is the composition of Portland cement? Explain how Portland cement is manufactured by wet process, with the help of chemical reactions involved in it.

OR

- 10. Write a short notes on
 - (a) Fire and flash points.
 - (b) Cloud and pour point.
 - (c) Aniline point