Code: 19DF23T
R-19
M.C.A. II Semester Regular Examinations November 2020

## Data Structures

Max. Marks: 60
Time: 3 Hours
Answer any five questions from the following ( $5 \times 12=60$ Marks ) $* * * * * * * * *$

Marks CO | Blooms |
| :---: |
| Level |

1. a) Describe the reason for having different data structures to store the data. Give the classification of Data Structures.
b) Calculate the time complexity of a recursive algorithm for factorial of a number.

| $6 M$ | CO3 | L2 |
| ---: | :--- | ---: |
| $6 M$ | co5 | L3 |
| $6 M$ | co1 | L2 |
| $6 M$ | CO1 | L2 |
| $12 M$ | co2 | L3 |

4. a) Demonstrate selection sort algorithm on the following list of numbers. $14,33,27,10,35,19,42,44$.

6M CO4
L3
b) Justify why merge sort is better than quick sort technique.
$6 \mathrm{M} \mathrm{CO4}$
L5
5. Write an algorithm for quick sort and apply the written algorithm to sort the following list. 54, 26, 93, 17, 77, 31, 44, 55, 20.

12M CO4 L3
6. a) Draw a hash table with open addressing and a size of 9 . Use the hash function "k\%7". Insert the keys: 5, 29, 20, 0, 27 and 18 into your table (in that order).

6 M CO3 L4
b) Describe different binary tree traversals with example.

6 M CO3
7. a) What is a threaded binary tree? Give the advantages of Threaded binary tree.
$6 \mathrm{M} \mathrm{CO4}$
b) Describe Hashing function and collision resolution techniques.
$6 \mathrm{M} \mathrm{CO4}$
8. a) In the binary search tree below, carry out the following operations in sequence: Add 5, add 17, delete 23, delete 9.

b) Write an algorithm for searching a node in B-tree and illustrate it with an example.
$\square$
Code: 19DF22T

## R-19

M.C.A. Il Semester Regular Examinations November 2020

## Java Programming

Max. Marks: 60
Time: 3 Hours
Answer any five questions from the following ( $5 \times 12=60$ Marks )

1. a) List and explain java buzz words. Identify which factors are making java a famous
language.

7M CO1

b) With an example program explain the concept of classes and objects in java.

2. a) Justify the use of 'this' keyword in a Java program with suitable example?

5M co1

b) Explain the usage of constructor and illustrate different types of constructors in
Java.

7M CO1

3. What are the benefits of inheritance? Explain various forms of inheritance with
suitable code segments.

12M CO1
4. What is method overriding? Illustrate the concepts of method overriding with an example. Is constructor overriding is possible in Java?

12M CO1
L3
5. Define interface. Compare how interface is different form abstract class. Write a java program to implement a simple interface.

12M CO3
6. a) Differentiate between final, finally and finalize with a suitable example.

6 M CO 2
b) Illustrate the hierarchy of Java exception classes.

6M CO2
7. a) Implement exception handling mechanism with example

6M CO2
b) Compare and contrast multi-threading and multitasking.

6M CO1
8. Develop a program that illustrates a multiple clients program in java.

Code: 19DC21T
M.C.A. Il Semester Regular Examinations November 2020

## Numerical Methods

Max. Marks: 60
Time: 3 Hours
Answer any five questions from the following ( $5 \times 12=60$ Marks )

1. a) Find a positive real root of $x \log _{10} x=1.2$ using Bisection Method.
b) Find the smallest real root of $x^{2}-\operatorname{lox}_{e} x-12=0$ by the method of false position.
2. Derive a formula to find the cube root of $N$ using Newton-Raphson method hence find the cube root of 15 .
3. a) Solve by Gauss-Elimination method,
$3 x+4 y+5 z=18,2 x-y+8 z=13,5 x-2 y+7 z=20$.
b) Solve the following system by the method of Factorization $x+3 y+8 z=4, x+4 y+3 z=-2, x+3 y+4 z=1$.
4. a) Fit a straight line to the following data. By the method of least squares.

| x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 1 | 1.8 | 3.3 | 4.5 | 6.3 |

b) Fit the curve $y=a e^{b x}$ to the following data.

| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 20 | 30 | 52 | 77 | 135 | 211 | 326 | 550 | 1052 |

5. The table below shows the number of absences $x$, in a calculus course and the final exam grade $y$, for 7 students. Find the correlation coefficient and interpret your result.

| x | 1 | 0 | 2 | 6 | 4 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 85 | 80 | 70 | 55 | 90 | 90 | 95 |

6. The population of a town is as follows.

| Year x | 1941 | 1951 | 1961 | 1971 | 1981 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Population y | 20 | 24 | 29 | 36 | 46 | 51 |

Estimate the population increase during the period 1946 to 1976.
7. Using Taylor series method, find an approximate value of y at $\mathrm{x}=0.1,0.2$ for the differential equation $y^{\prime}=2 y+3 e^{x}, y(0)=0$. Compare the numerical solution obtained with exact solution.
8. Given the differential equation $y^{\prime}=\frac{2 y}{x}$ with $y(1)=2$. Compute $y(2)$ by Milne's method. Find the Starting values using Runge-Kutta method taking $\mathrm{h}=0.25$.

## Hall Ticket Number :

## R-19

## Code: 19DF25T

M.C.A. II Semester Regular Examinations November 2020

## Operations Research

Max. Marks: 60
Answer any five questions from the following ( $5 \times 12=60$ Marks )
$\qquad$

| Marks | CO | Blooms <br> Level |
| ---: | ---: | ---: |
| 4 M | $\mathrm{CO1}$ | L 1 |

1. a) What are the phases of OR? Explain.

4M CO1
b) Write the dual of the following LPP and solve the dual problem by simplex method, hence find the primal solution.
Minimize: $\quad Z=6 x_{1}+3 x_{2}$
Subject to: $\quad 6 x_{1}-3 x_{2}+x_{3} \geq 2$
$3 x_{1}+4 x_{2}+x_{3} \geq 5$
and $\quad x_{1}, x_{2}, x_{3} \geq 0$
2. Solve the following transportation problem for minimum total transportation cost.

| To | CUSTOMER |  |  | Supply |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | From | W | X |  |  |
| SITE | A | 7 | 3 | 6 | 5 |
|  | B | 4 | 6 | 8 | 10 |
|  | C | 5 | 8 | 4 | 7 |
|  | D | 8 | 4 | 3 | 3 |
| Demand |  |  | 5 | 8 | 10 |

12M CO2 L3
3. Apply Hungarian algorithm to find the optimal assignment of salesmen to sales areas for the following cost matrix:

|  |  | Sales Area |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $A_{1}$ | $A_{2}$ | $A_{3}$ | $A_{4}$ |  |
| Salesman | $\mathrm{S}_{1}$ | 11 | 17 | 8 | 16 |  |
|  | $\mathrm{~S}_{2}$ | 9 | 7 | 12 | 10 |  |
|  | $\mathrm{~S}_{3}$ | 13 | 16 | 15 | 12 |  |
|  | $\mathrm{~S}_{4}$ | 14 | 10 | 12 | 11 |  |

12M CO2 L3
4. Apply Johnson's algorithm to find the sequence of machines that minimizes the total elapsed time ( T ) required for completing the following tasks. Each job is processed in the order ACB. Find ' T ' also.

| JOB | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M} / \mathrm{c}-\mathrm{A}$ | 12 | 6 | 5 | 11 | 5 | 7 | 6 |
| $\mathrm{M} / \mathrm{c}-\mathrm{B}$ | 7 | 8 | 9 | 4 | 7 | 8 | 3 |
| $\mathrm{M} / \mathrm{C}-\mathrm{C}$ | 3 | 4 | 1 | 5 | 2 | 3 | 4 |

5. Find an optimum sequence for the following sequencing problem of 4 jobs and 5 machines, when passing is not allowed, of which the processing time (in hours) is given below. Find the total elapsed time also.

| JOB | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7 | 5 | 2 | 3 | 9 |
| 2 | 6 | 6 | 4 | 5 | 10 |
| 3 | 5 | 4 | 5 | 6 | 8 |
| 4 | 8 | 3 | 3 | 2 | 6 |

6. A computer contains 10,000 resistors. When any resistor fails, it is replaced. The cost of replacing a resistor individually is Re.1only. If all the resistors are replaced at the same time, the cost per resistor would be reduced to 35 paise. The percent surviving $\mathrm{S}(\mathrm{t})$ at the end of month t is given below:

| t | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~S}(\mathrm{t})$ | 100 | 97 | 90 | 70 | 32 | 15 | 0 |

What is the optimum replacement plan?
7. a) Define payoff matrix and explain the minimax criterion.
b) Solve the following game of two players (A\&B) by graphical method

|  | B1 | B2 | B3 | B4 |
| :---: | :---: | :---: | :---: | :---: |
| A1 | 4 | -2 | 3 | -1 |
| A2 | -1 | 2 | 0 | 1 |

8. a) Derive an expression for optimum order quantity for basic inventory model.
b) The daily demand for a commodity is approximately 100 units. Every time an ordered is placed, a fixed cost of Rs. 100/- is incurred. The daily holding cost per unit inventory is Rs. 0.02 . If the lead time is 12 days, determine the economic lot size, minimum cost, and reorder point.

6M CO4 L3

6M cos L2
$6 \mathrm{M} \mathrm{CO5}$
L3
Hall Ticket Number :
$\square$Code: 19DF24T
R-19
M.C.A. Il Semester Regular Examinations November 2020
Organization Structure \& Personnel Management
Max. Marks: 60
Answer any five questions from the following ( $5 \times 12=60$ Marks )Time: 3 Hours

|  |  | Marks | CO | Blooms |
| :---: | :---: | :---: | :---: | :---: |
| 1. a) | It is well known maxim that leadership is what a leader shows. What according to you is leadership? | 6M | CO1 | L5 |
|  | Which do you think to be more conducive for the development of your organization Theory X or Theory Y and why? | 6M | CO1 | L5 |
| 2. a) | What are the policies involved in making a good decision? | 6M | CO2 | L1 |
| b) | Elucidate the tasks performed by personnel manager as line manager and staff manager? | 6M | CO2 | L2 |
|  | Examine the Evolution of personnel management. | 6M | CO2 | L3 |
|  | Compare and Contrast Personnel Management v/s Human Resource Management. | 6M | CO2 | L2 |
| 4. a) | Classify different methods of recruiting employees. | 6M | CO3 | L4 |
|  | Do you think reskilling can prove to be beneficial to both the organisation and the employees? | 6M | CO3 | L3 |
| 5. a) | Discuss the objectives of training and development. | 6M | CO3 | L2 |
|  | Outline the policies adopted by the organizations in transfers and promotions. | 6M | CO 3 | L4 |
| 6. $\begin{array}{r}\text { a) } \\ \text { b) }\end{array}$ | Illustrate are the key concepts of transactional analysis? | 6M | CO4 | L3 |
|  | Define perception. Analyze the process of perception in an organization. | 6M | CO 4 | L4 |
| 7. a) | Explain bench marking process. | 6M | CO5 | L1 |
|  | Give the Basic Concepts of Total Quality Management. | 6M | CO5 | L2 |
| 8. a) b) | Discuss the steps in Business Process Reengineering with suitable Examples. | 6M | CO5 | L2 |
|  | What are the main features and perspectives of a Balanced Scorecard? | 6M | CO 5 | L1 |L2b) What are the main features and perspectives of a Balanced Scorecard? 6M cosL1

$\square$
Code: 19DF21T
M.C.A. Il Semester Regular Examinations July 2020

Database Management Systems
Max. Marks: 60
Time: 3 Hours
Answer any five questions from the following ( $5 \times 12=60$ Marks )

|  |  | Marks | CO | Blooms Level |
| :---: | :---: | :---: | :---: | :---: |
| 1. a) b) | Differentiate between Data and Information | 5M | CO1 | L2 |
|  | Define the following terms |  |  |  |
|  | i) Data Model ii) Scheme iii) instance IV) Canned transaction | 7M | CO1 | L1 |
| 2. a) | What is generalization and specialization in database? | 6 M | CO1 | L1 |
| b) | What are the responsibilities of the DBA and the database designers? | 6 M | CO1 | L2 |
| 3. | Consider the following Schema |  |  |  |
|  | Customer(cust_name, street, city) |  |  |  |
|  | Branch(Branch_name, Branch_city) |  |  |  |
|  | Account(Account_number, branch_name, Balance) |  |  |  |
|  | Loan(Loan_number, Branch_name, amount) |  |  |  |
|  | Borrower(cust_name, Loan_number) |  |  |  |
|  | Depositor(Cust_name, Account_number) |  |  |  |
|  | and answer the below queries using tuple relational calculus |  |  |  |
|  | i. Find the loan number, branch, amount of loans of greater than or equal to 10000 amount. |  |  |  |
|  | ii. Find the loan number of each loan of an amount greater or equal to 10000 <br> iii. Find the names of all customers who have a loan and an account at the bank. iv. Find the names of all customers having a loan at the "ABC" branch. | 12M | CO 2 | L2 |
| 4. | Write SQL statements for following: |  |  |  |
|  | Student( Enrno, name, courseld, emailld, cellno) |  |  |  |
|  | Course(courseld, course_nm, duration) |  |  |  |
|  | i) Add a column city in student table. |  |  |  |
|  | ii) Find out list of students who have enrolled in "computer" course. |  |  |  |
|  | iii) List name of all courses with their duration. |  |  |  |
|  | iv) List name of all students start with 'a'. |  |  |  |
|  | v) List emailld and cellno of all mechanical engineering students. | 12M | CO3 | L2 |
| 5. a) b) | What is Functional Dependency? Explain its use in database design | 6M | CO3 | L1 |
|  | Normalize following relation up to 3NF |  |  |  |
|  | Bank (acno, cust_name, ac_type, bal, int_rate, cust_city, branchld, branch_nm, br_city) | 6M | CO 3 | L2 |
| 6. $\begin{array}{r}\mathrm{a} \\ \mathrm{b}\end{array}$ | Discuss the desirable properties of transaction. | 5M | CO4 | L3 |
|  | Explain how shadow paging helps to recover from transaction failure. | 7M | CO4 | L1 |
| 7. $\begin{array}{r}\mathrm{a} \\ \mathrm{b}\end{array}$ | Explain Log-Based Recovery in detail. | 6M | CO4 | L1 |
|  | Why Concurrency control is needed? Demonstrate with example. | 6M | CO4 | L3 |
| 8. $\begin{array}{r}\text { a } \\ \\ b\end{array}$ | What is dynamic hashing? Give the implementation details of it. | 6M | CO5 | L1 |
|  | Is B+ tree, a multi-level indexing? How does it differ from B-tree? | 6M | CO5 | L2 |

