Hall Ticket Number :							
Code: 20DF12T						R-20	

M.C.A. I Semester Regular & Supplementary Examinations March 2023

Data Structures and Algorithms

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60 \text{ Marks}$)

			Marks	CO	BL
		UNIT-I			
1.	a)	Define Data Structure. List the operations of the data structures with examples	6M	CO1	L1
	b)	Differentiate between iterative and recursive algorithms	6M	CO1	L2
		OR			
2.	a)	What is Abstract Data Type (ADT)? Explain between primitive and non-primitive data types	6M	CO1	L2
	b)	Describe about the best case, average case and worst case efficiency of an algorithm	6M	CO1	L2
		UNIT-II			
3.		Write about traversing a linked list with an example and write an algorithm for traversals.	12M	CO2	L2
		OR			
4.		Describe the procedure to convert infix expression to postfix form. Convert infix expression into its equivalent post fix expression A*(B+D)/E-F*(G+H/K)	12M	CO2	L3
5.		<u> </u>			
Э.		Build the binary tree for the given in order and preorder traversals: In order: E A C K F H D B G	4 O M	CO2	1.0
		Preorder: F A E K C D H G B	12M	CO3	L3
•	- \	OR	014	000	
6.	a)	Explain about Quadratic Probing with example	6M	CO3	L2
	b)	Explain about collision resolution techniques	6M	CO3	L2
_		UNIT-IV			
7.		Define a balanced search tree. Construct an AVL tree with the following keys: 3, 2, 1, 4, 5, 6, 7, 16, 15 and 14 with the necessary rotations.	12M	CO4	L3
		OR			
8.	a)	Explain about BSF graph traversal algorithm with an example	6M	CO4	L2
	b)	Explain about Prim's algorithm with an example UNIT-V	6M	CO4	L2
9.	a)	Write an algorithm to perform binary search. Illustrate it with an example.	6M	CO5	L2
	b)	Apply insertion sort on the following elements 3, 1, 4,7,5, 9, 2, 6, 5,10	6M	CO5	L3
	,	OR			
10.	a)	State and explain merge sort with an example	6M	CO5	L2
	b)	Write an algorithm to implement bubble Sort and write its efficiency.	6M	CO5	L3
	,	***END***			

Codo: 20DE11T						R-2	20
Hall Ticket Number :							

Code: 20DF11T

M.C.A. I Semester Regular & Supplementary Examinations March 2023

Mathematical Foundations of Computer Science

Max. Marks: 60 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

			Marks	СО	BL
		UNIT-I			
1.	a)	Explain the connectives and their truth tables	8M	CO1	L2
	b)	Prove that $(p \lor q) \rightarrow (p \rightarrow q)$ is a contingency.	4M	CO1	L3
		OR			
2.		Obtain the PDNF and PCNF of $(P \lor Q) \land (\neg P \lor R) \land (Q \lor R)$	12M	CO1	L3
		UNIT-II			
3.	a)	Let X={1,2,3,4} and $X = \{(1,1),(1,4),(2,2),(2,3),(3,2),(3,3),(4,1),(4,4)\}$.	6M	CO2	L2
		Then prove that R is an equivalence relation.			
	b)	Define the properties of relations with an example.	6M	CO2	L1
		OR			
4.	a)	Define Lattice and write down its properties.	4M	CO2	L1
	b)	Draw Hasse diagram representing the positive divisor of 36.	8M	CO2	L4
		UNIT-III			
5.	a)	Find the number of permutations of all the letters of the word BASEBALL if the words are to begin and end with a vowel.	6M	CO3	L3
	b)	Find the value of n such that $P(n,2) = 90$	6M	CO3	L1
		OR			
6.	a)	Find the Coefficient of $x y z^5$ in the expansion of $(x+y+z)^7$	6M	CO3	L2
	b)	How many persons must chose in order that at least 5 of them will have birthdays in the same calendar month.	6M	CO3	L3
		UNIT-IV			
7.	a)	Find the coefficient of x^{12} in $(1-4x)^{-5}$.	6M	CO4	L1
	b)	Find the sequence generated by the function $(2+x)^4$	6M	CO4	L3
		OR			
8.	a)	Solve $a_n + a_{n-1} - 6a_{n-2} = 0$ for $n \ge 2$ given that $a_0 = -1, a_1 = 8$.	6M	CO4	L3
	b)	Solve the recurrence relation $a_n = a_{n-1} + n$, $n \ge 1$ where $a_0 = 2$ by substitution method.	6M	CO4	L3
0	٥)	Define the following with examples: (i) Degree of a vertex	6M	CO5	1.2
Э.	a)	Define the following with examples: (i) Degree of a vertex (ii) Complete Graph (iii) Regular Graph	OIVI	003	LZ
	b)	Define chromatic number and explain with a suitable example.	6M	CO5	L4
		OR			
10.		Explain Depth First Search and Breadth First Search algorithms with suitable examples.	12M	CO5	L4

	На	all Ticket Number :										\neg	
	Со	de: 20DC11T									R-20		
		M.C.A. I Semeste	_					•		ions March	า 2023		
	111	ax. Marks: 60	Pi	robo	ability	/ and	l Stat	istic	S	Tim	ne: 3 Hc	n irc	
	7710	Answer all five unit	s by cho	osing		questic		n eac	ch unit (013	
					_						Marks	СО	BL
	- \	The attribute to the	1		L	INIT-				- ((t)			
1.	a)	The students in other for an exa											
		and girls sit alter					•		•	•			
		boys and 4 girls						•		• ()	6M	2	1
	b)	Calculate exped						•		robability			
		distribution of th				ole X			У				
		X			0	0.1	0.3	0.2	2		6M	3	3
		<u> </u>	0.0		OF		0.0	0.2	_		0	Ü	J
2.	a)	In a bolt factory 50% of the iter defective. A bode defective. Find to (i) Machine A (ii)	ms in olt is he prob) Machi	which drave babil ine E	ch 69 vn a lity th 3 (iii)	%, 3°, t rar at is Macl	%, 29 ndom manu nine (% of and and alfact of and and and and and and and and and and	the id four ured fr	tems are nd to be om	6M	1	2
	b)	If a probability d								x ≤ 3 re			
		$x = \frac{1}{2}$ and $x =$	_			NIT–					6M	2	4
3.	10	% of screws pro	duced	bv	<u>!</u>			def	ective.	Find the			
	pro	bability that out fective (ii) at most	of 10 s	scre	ws c	hose ive (i	n at i	rand	om (i)	1 will be	12M	4	5
4.	ex	t of 800 families bect to have (i) 3 st one boy.							•	•	12M	5	6
		·			U	NIT-I							
5.	pos this	population consists sible samples of population. Find Mean of the po	size tv d pulatio	vo c n.	an be	e drav	vn wi						
	i	i) Standard deviaii) The mean of thev) The Standard of	ne sam	pling	g dist	ributio	on of			f means.	12M	3	4

Code: 20DC11T

OR

6.	a)	The mean and standard deviation of a population are 11,795 and 14,054 respectively. What can we assert with 95% about the maximum error if \bar{x} =11,795, n=50.Also construct the 95% confidence interval for true mean.	6M	1	1
	b)	A random sample of size 100 is taken from a population with σ = 5.1. Given that the sample mean is 21.6. Construct a 95% confidence interval for the population mean μ .	6M	3	3
7.	a)	A mechanist is making engine parts with axle diameters of 0.7000 inches. A random sample of 10 parts shows a mean diameter of 0.742 inch, with S.D of 0.04 inch. Compute the statistic you would use to test whether the work is meeting the specifications at 0.05 level of significance.	6M	2	2
	b)	A random sample of six steel beams has a mean compressive strength of 58,392 p.s.i (pounds per square inch) with a S.D of 648 p.s.i. use this information and the level of significance 0.05 to test the true average compressive strength of the steel from which this sample came is 58,000 p.s.i. assume normality. OR	6M	3	1
8.	a)	Producer of "gutkha" claims that the nicotine content in his gutkha on the average is 1.83 mg. can this claim accepted if a random sample of 8 gutkha of this type have the nicotine contents of 2.0, 1.7, 2.1, 1.9, 2.2, 2.1, 2.0, 1.6 mg. Use a 0.05 level of significance.	6M	1	2
	b)	The mean life time of a sample of 25 fluorescent light bulbs produced by a company is computed to be 157 hours with S.D of 120 hours. The company claims that the average life of the bulbs is 1600 hours using the level of significance of 0.05. Is the claim acceptable? UNIT-V	6M	3	3
9.	a)	A washing machine repairmen finds that the time spent on his jobs has an exponential distribution with mean 30 minutes. If he repairs sets in the order in which they come in, and if the arrival of sets is approximately Poisson with an average rate of 10 per 8 hour day, what is repairman's expected ideal time each day. How many jobs are ahead of the average set just brought in?	6M	1	4
	b)	Write the relation between L_s , L_q , W_s , and W_q . OR	6M	2	1
10.	a)	Describe a queue model of M/M/I and determine the probability that at least one unit is present in the system.	6M	3	2
	b)	What are the Assumptions and Limitations of Queuing model. ***END***	6M	2	1

Tiali Ticket Number .						R-20	
Hall Ticket Number:							

Code: 20DF13T

M.C.A. I Semester Regular & Supplementary Examinations March 2023

Relational Database Management Systems

Max. Marks: 60 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

			Marks	СО	BL
		UNIT-I			
1.		With neat diagram explain the architecture of Data Base Management Systems (DBMS) and Write the main Applications of DBMS? OR	12M	CO1	L2
2.	a)	Explain E-R diagrams design issues	6M	CO1	L2
۷.	b)	Explain about Specialization and Generalization with suitable examples	6M	CO1	L2
	D)	UNIT-II	Olvi	001	L
3.	a)	Illustrate the Structure of Relational database	6M	CO2	L3
0.	b)	Differentiate between Tuple relational calculus, Domain relational calculus	6M	CO2	L2
	۵)	OR	OW	002	
4.	a)	Illustrate Relational algebra Operations with example queries	6M	CO2	L3
•	b)	Illustrate QBE (Query-by-Example) with example queries	6M	CO2	L3
	۵)	UNIT-III	OW	002	
5.	a)	Discuss nested queries with examples?	6M	CO3	L2
	b)	Illustrate various types Integrity constraints in SQL with examples	6M	CO3	L3
	-,	OR			
6.	a)	Describe functional dependencies. How are primary keys related to FD's?	6M	CO3	L2
	b)	Interpret Why do we need normalization? Explain the difference between			
	-,	3NF and 4NF with example.	6M	CO3	L2
		UNIT-IV			
7.	a)	Discuss different phases of transaction?	6M	CO4	L2
	b)	Illustrate concurrent execution of transaction with examples?	6M	CO4	L3
		OR			
8.	a)	Illustrate How does Recovery manager ensure atomicity of transactions?			
		How does it ensure durability?	6M	CO4	L3
	b)	Explain about Log-Based Recovery	6M	CO4	L2
		UNIT-V			
9.	a)	Explain in detail about various File Organization techniques	6M	CO5	L2
	b)	Explain in detail about Data-Dictionary Storage	6M	CO5	L2
		OR			
10.	a)	Explain about B+ tree index file?	6M	CO5	L2
	b)	Explain in detail about Multiple-key access	6M	CO5	L2
		END			

Hall Ticket Number :						R-20	
Code: 20DC12T						K-20	

M.C.A. I Semester Regular & Supplementary Examinations March 2023

Technical Communication

Max. Marks: 60 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

	******		'	
		Marks	СО	BL
	UNIT-I			
1.	Justify how language is a tool of effective communication.	12M	CO1	L5
	OR			
2.	Outline different types of listening that are basic for communication.	12M	CO1	L4
	UNIT-II			
3.	Describe the role of kinesics in enhancing verbal communication.	12M	CO2	L2
	OR			
4.	Analyse some tips pertaining to the types of visual aids one may commonly use in one's presentations.	12M	CO2	L4
	UNIT-III			
5.	Discuss the significance of Letter Writing and list the seven C s to draft effectively.	12M	CO4	L2
	OR			
6.	Summarize writing techniques required to draft effective professional emails.	12M	CO4	L2
7.	UNIT-IV Asses the common types of reports.	12M	CO4	L5
	OR			

		UNIT-IV	7		
7.	Asses the common types of repor	ts.	12M	CO4	L5
		OR			

8. You have been asked by a Shampoo manufactures company to make a study of the consumer reaction to their product. Recommend measures to improve the image and the sales of their product. Develop a report. 12M CO4 L6

UNIT-V Justify how the Group Discussion plays an important role in job selection 9. and admission to professional courses. 12M CO3 L5

OR

10. "Tell us about yourself frightens many candidates during job interviews". Do you agree with the above statement? Support. 12M CO₃ L₅

****END****

	Ha	all Ticket Number :			
		de: 20DF14T	R-20		
		M.C.A. I Semester Regular & Supplementary Examinations Marc Computer Organization	ch 202	23	
	Мс	ax. Marks: 60 Answer all five units by choosing one question from each unit ($5 \times 12 = 60$	me: 3 l Marks		
		******	Marks	СО	BL
		UNIT-I			
1.	a)	Explain in detail about Demultiplexer with a block diagram	6M	CO1	L2
	b)	Illustrate the implementation of 4-to-2 priority encoder	6M	CO1	L2
		OR			
2.	a)	Illustrate the 4-to-1 multiplexer implementation using the basic gates	6M	CO1	L3
	b)	Explain the implementation of Full-adder along with Truth Table	6M	CO1	L2
_	,	UNIT-II			
3.	,	Explain in detail about Typical ROM chip with a schematic	6M	CO2	L2
	b)	Explain in detail about set-associative mapping	6M	CO2	L2
4		OR	4014	000	1.0
4.		What is meant by Auxiliary memory? Explain about the different types	1 ZIVI	CO2	L2
		UNIT-III			
5.		Discuss in detail about Two & Three address instructions	4014	000	
٥.		OR	12IVI	CO3	L2
6.		Elaborate in detail about Instruction formats in 8086	101/	CO3	L2
0.		Elaborate in detail about instruction formats in 6066	I Z IVI	CO3	LZ
		UNIT-IV			
7.		Discuss in detail about the following			
		i. Statements			
		ii. Directives	12M	CO4	L2
		OR			
8.		Explain in detail on the Data transfer modes in 8086	12M	CO4	L2
		UNIT-V			
9.		What is Address Sequencing? Explain in detail about the address			
		sequencing capabilities required in a control memory	12M	CO5	L2
		OR			
10.	a)	Explain how is Decoding of microoperation fields undertaken in Control Unit	6M	CO5	L2
	b)	Explain the differences between hardwired control and Microprogrammed			
		control	6M	CO5	L2
		END			