## Code: 20DF12T

M.C.A. I Semester Regular \& Supplementary Examinations March 2023 Data Structures and Algorithms
Max. Marks: 60
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks $) ~$
$* * * * * * * * *$
Marks CO BL

## UNIT-I

1. a) Define Data Structure. List the operations of the data structures with examples
b) Differentiate between iterative and recursive algorithms

6M CO1
L1
6M CO1 L2
OR
2. a) What is Abstract Data Type (ADT)? Explain between primitive and nonprimitive data types
$6 \mathrm{M} \mathrm{CO1}$
L2
b) Describe about the best case, average case and worst case efficiency of an
algorithm

UNIT-II
3. Write about traversing a linked list with an example and write an algorithm for traversals.

12M CO2
L2
OR
4. Describe the procedure to convert infix expression to postfix form. Convert infix expression into its equivalent post fix expression $A^{*}(B+D) / E-F^{*}(G+H / K)$

12M CO2

## UNIT-III

5. Build the binary tree for the given in order and preorder traversals: In order: EACKFHDBG
Preorder: FAEKCDHGB
12M CO3 L3

## OR

6. a) Explain about Quadratic Probing with example

6M CO3 L2
b) Explain about collision resolution techniques

6 M CO 3 L 2

## UNIT-IV

7. Define a balanced search tree. Construct an AVL tree with the following keys: $3,2,1,4,5,6,7,16,15$ and 14 with the necessary rotations.

12M CO4 L3

## OR

8. a) Explain about BSF graph traversal algorithm with an example

6 M CO4 L2
b) Explain about Prim's algorithm with an example
$6 \mathrm{M} \mathrm{CO4}$ L2

## UNIT-V

9. a) Write an algorithm to perform binary search. Illustrate it with an example.

6 M CO5 L2
b) Apply insertion sort on the following elements $3,1,4,7,5,9,2,6,5,10$

6M CO5 L3

## OR

10. a) State and explain merge sort with an example

6 M CO5 L2
b) Write an algorithm to implement bubble Sort and write its efficiency.
$6 \mathrm{M} \mathrm{CO5}$ L3

## Mathematical Foundations of Computer Science

Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 12=60 \mathrm{Marks}$ )

## UNIT-I

1. a) Explain the connectives and their truth tables

8M CO1
L2
b) Prove that $(p \vee q) \rightarrow(p \rightarrow q)$ is a contingency.

4M CO1
OR
2. Obtain the PDNF and PCNF of $(P \vee Q) \wedge(\neg P \vee R) \wedge(Q \vee R)$

12M CO1 L3

## UNIT-II

3. a) Let $X=\{1,2,3,4\}$ and $X=\{(1,1),(1,4),(2,2),(2,3),(3,2),(3,3),(4,1),(4,4)\}$. 6 M CO 2 L 2 Then prove that R is an equivalence relation.
b) Define the properties of relations with an example.

6M CO2
4. a) Define Lattice and write down its properties.
$4 \mathrm{M} \quad \mathrm{CO} 2$
L1
b) Draw Hasse diagram representing the positive divisor of 36 .

8 M CO 2
UNIT-III
5. a) Find the number of permutations of all the letters of the word BASEBALL if

6 M CO 3L3 the words are to begin and end with a vowel.
b) Find the value of n such that $P(n, 2)=90$

6 M CO
OR
6. a) Find the Coefficient of $x y z^{5}$ in the expansion of $(x+y+z)^{7}$
$6 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
b) How many persons must chose in order that at least 5 of them will have

6 M CO 3 L3 birthdays in the same calendar month.

## UNIT-IV

7. a) Find the coefficient of $x^{12}$ in $(1-4 x)^{-5}$.

6M CO4 L1
b) Find the sequence generated by the function $(2+x)^{4}$
$6 \mathrm{M} \mathrm{CO4} \mathrm{L3}$
OR
8. a) Solve $a_{n}+a_{n-1}-6 a_{n-2}=0$ for $n \geq 2$ given that $a_{0}=-1, a_{1}=8$.

6 M CO
L3
b) Solve the recurrence relation $a_{n}=a_{n-1}+n, n \geq 1$ where $a_{0}=2$ by 6M CO4 L3 substitution method.

## UNIT-V

9. a) Define the following with examples: (i) Degree of a vertex

6M CO5 L2
(ii) Complete Graph
(iii) Regular Graph
b) Define chromatic number and explain with a suitable example.
$6 \mathrm{M} \mathrm{CO5}$
10. Explain Depth First Search and Breadth First Search algorithms with suitable 12M CO5 L4 examples.
M.C.A. I Semester Regular \& Supplementary Examinations March 2023

## Probability and Statistics

Max. Marks: 60
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )
$* * * * * * * * *$

## UNIT-I

1. a) The students in a class are selected at random one after the other for an examination. Find the probability that the boys and girls sit alternatively if there are (i) 5 boys and 4 girls (ii) 4 boys and 4 girls.

6M $2 \quad 1$
b) Calculate expectation and variance of $X$, if the probability distribution of the random variable $X$ is given by

| $X$ | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $F$ | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
| OR |  |  |  |  |  |

6M $3 \quad 3$
2. a) In a bolt factory machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ manufacture $20 \%, 30 \%$, $50 \%$ of the items in which $6 \%, 3 \%, 2 \%$ of the items are defective. A bolt is drawn at random and found to be defective. Find the probability that is manufactured from
(i) Machine A (ii) Machine B (iii) Machine C .

6M 12
b) If a probability density function $f(x)=\left\{\begin{array}{l}K x^{3} \text { in } 0 \leq x \leq 3 \\ 0 \text { else where }\end{array}\right.$.

Find the value of $K$ and find the probability between

$$
x=\frac{1}{2} \text { and } x=\frac{3}{2} .
$$

6M 24

## UNIT-II

3. $10 \%$ of screws produced by a company are defective. Find the probability that out of 10 screws chosen at random (i) 1 will be defective (ii) at most 2 will be defective (iii) none will be defective.
4. Out of 800 families with 5 children each, how many would you expect to have (i) 3 boys (ii) 5 girls (iii) either 2 (or) 3 boys (iv) At least one boy.

## UNIT-III

5. A population consists of five numbers $2,3,6,8 \& 11$. Consider all possible samples of size two can be drawn with replacement from this population. Find
i) Mean of the population.
ii) Standard deviation of the population.
iii) The mean of the sampling distribution of means.
iv) The Standard deviation of the sampling distribution of means.

## OR

6. a) The mean and standard deviation of a population are 11,795 and 14,054 respectively. What can we assert with $95 \%$ about the maximum error if $\bar{x}=11,795, \mathrm{n}=50$. Also construct the $95 \%$ confidence interval for true mean.
b) A random sample of size 100 is taken from a population with $\sigma=5.1$. Given that the sample mean is 21.6 . Construct a $95 \%$ confidence interval for the population mean $\mu$.

## UNIT-IV

7. a) A mechanist is making engine parts with axle diameters of 0.7000 inches. A random sample of 10 parts shows a mean diameter of 0.742 inch, with S.D of 0.04 inch. Compute the statistic you would use to test whether the work is meeting the specifications at 0.05 level of significance.
b) A random sample of six steel beams has a mean compressive strength of 58,392 p.s.i (pounds per square inch) with a S.D of 648 p.s.i. use this information and the level of significance 0.05 to test the true average compressive strength of the steel from which this sample came is 58,000 p.s.i. assume normality.

## OR

8. a) Producer of "gutkha" claims that the nicotine content in his gutkha on the average is 1.83 mg . can this claim accepted if a random sample of 8 gutkha of this type have the nicotine contents of 2.0, 1.7, 2.1, 1.9, 2.2, 2.1, 2.0, 1.6 mg . Use a 0.05 level of significance.
b) The mean life time of a sample of 25 fluorescent light bulbs produced by a company is computed to be 157 hours with S.D of 120 hours. The company claims that the average life of the bulbs is 1600 hours using the level of significance of 0.05 . Is the claim acceptable?

## UNIT-V

9. a) A washing machine repairmen finds that the time spent on his jobs has an exponential distribution with mean 30 minutes. If he repairs sets in the order in which they come in, and if the arrival of sets is approximately Poisson with an average rate of 10 per 8 hour day, what is repairman's expected ideal time each day. How many jobs are ahead of the average set just brought in?

6M $1 \begin{array}{ll} & 1\end{array}$
b) Write the relation between $L_{s}, L_{q}, W_{s}$, and $W_{q}$.
6M 21

## OR

10. a) Describe a queue model of $M / M / I$ and determine the probability that at least one unit is present in the system.

6M
32
b) What are the Assumptions and Limitations of Queuing model.

6M
21

Hall Ticket Number :

## Code: 20DF13T

M.C.A. I Semester Regular \& Supplementary Examinations March 2023 Relational Database Management Systems
Max. Marks: 60
Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )

## UNIT-I

1. With neat diagram explain the architecture of Data Base Management Systems (DBMS) and Write the main Applications of DBMS?
12M CO1 L2

## OR

2. a) Explain E-R diagrams design issues
6M CO1 L2
b) Explain about Specialization and Generalization with suitable examples $\quad 6 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

## UNIT-II

3. a) Illustrate the Structure of Relational database
6 M CO2 L3
b) Differentiate between Tuple relational calculus, Domain relational calculus $\quad 6 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

## OR

4. a) Illustrate Relational algebra Operations with example queries
6 M CO 2 L 3
b) Illustrate QBE (Query-by-Example) with example queries
$6 \mathrm{M} \mathrm{CO2}$ L3

## UNIT-III

5. a) Discuss nested queries with examples?
6 M CO3 L2
b) Illustrate various types Integrity constraints in SQL with examples 6M CO3 L3

## OR

6. a) Describe functional dependencies. How are primary keys related to FD's?
6M CO3 L2
b) Interpret Why do we need normalization? Explain the difference between 3NF and 4NF with example.
6M CO3 L2

## UNIT-IV

7. a) Discuss different phases of transaction?
$6 \mathrm{M} \mathrm{CO4}$
L2
b) Illustrate concurrent execution of transaction with examples?
6M CO4 L3

## OR

8. a) Illustrate How does Recovery manager ensure atomicity of transactions?
How does it ensure durability?
6 M CO4 L3
b) Explain about Log-Based Recovery
$6 \mathrm{M} \mathrm{CO4}$ L2

> UNIT-V
9. a) Explain in detail about various File Organization techniques
6 M CO5 L2
b) Explain in detail about Data-Dictionary Storage
6M CO5 L2
10. a) Explain about $\mathrm{B}+$ tree index file?
6 M CO5 L2
b) Explain in detail about Multiple-key access

Hall Ticket Number:
$\square$
Code: 20DF14T
R-20
M.C.A. I Semester Regular \& Supplementary Examinations March 2023
Computer Organization
Max. Marks: 60 Time: 3 Hours
Answer all five units by choosing one question from each unit ( $5 \times 12=60$ Marks )
UNIT-I1. a) Explain in detail about Demultiplexer with a block diagram6M CO1 L2
b) Illustrate the implementation of 4-to-2 priority encoder 6M CO1 ..... L2
OR
2. a) Illustrate the 4-to-1 multiplexer implementation using the basic gates 6M CO1 ..... L3
b) Explain the implementation of Full-adder along with Truth Table 6M CO1 ..... L2
UNIT-II3. a) Explain in detail about Typical ROM chip with a schematic
6 M CO 2 ..... L2
b) Explain in detail about set-associative mapping 6 M CO 2 ..... L2
OR
4. What is meant by Auxiliary memory? Explain about the different types ..... 12M CO2 ..... L2
UNIT-III
5. Discuss in detail about Two \& Three address instructions12 M CO L2
OR
6. Elaborate in detail about Instruction formats in 808612M CO3 L2
UNIT-IV7. Discuss in detail about the followingi. Statementsii. Directives12M CO4 L2
OR
8. Explain in detail on the Data transfer modes in 808612M CO4 L2
UNIT-V9. What is Address Sequencing? Explain in detail about the addresssequencing capabilities required in a control memory12 M CO5 L2
OR
10. a) Explain how is Decoding of microoperation fields undertaken in Control Unit6M CO5L2
b) Explain the differences between hardwired control and Microprogrammed control $6 \mathrm{M} \mathrm{CO5}$ ..... L2

