B.Tech. I Year Supplementary Examinations March 2021

Engineering Drawing

(Common to EEE, ECE, CSE \& IT)
Time: 3 Hours
Max. Marks: 70
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. The major axis of an ellipse is 110 mm long and the foci are at a distance of 15 mm from its ends. Draw the ellipse one-half of it by 'concentric circles' method and the other half by 'rectangle' method.
2. Draw a hypocycloid generated by a rolling circle of 60 mm diameter for one complete revolution. The radius of the directing circle is 100 mm . Draw a tangent and a normal to the hypocycloid at 50 mm from the centre of the directing circle.
3. A line $A B$ is 30 mm long and inclined at 30° to $V P$ and parallel to HP. The end A of the line is 15 mm above HP and 20 mm in front of VP. Draw its projections.
4. Draw the projections of a regular pentagon of 25 mm side with its surface making angle of 45° to HP. One of the sides of the pentagon is parallel to HP and 15 mm away from it.
5. Draw the projections of a hexagonal prism of base 25 mm side and axis 60 mm long, when it is resting on one of its corners of the base to HP. The axis of the solid is inclined at 45° to HP
6. Draw an isometric projection of
a) A square plane of 40 mm
b) A rectangular plane of $60 \mathrm{~mm} \times 80 \mathrm{~mm}$

Both in the horizontal and vertical plane
7. Draw the Isometric View of

8. Draw the Front View, Top View and Side View of

Hall Ticket Number :							

Code: 1GC12

R-13

B.Tech. I Year Supplementary Examinations March 2021
 Engineering Physics

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)
$* * * * * * * * *$

1. a) What is diffraction grating and explain
b) How grating forms diffraction spectrum
2. a) Explain Bragg's law of diffraction
b) Illustrate Laue method of X-ray diffraction
3. Illustrate Kronig-penney model
4. a) Describe Hall effect in semiconductor
b) Brief about working of LED
5. Explain ionic, electronic and orientation polarizations
6. a) Illustrate joshepson effect
b) compare Type-I and Type-II superconductors
7. Deduce expressions for acceptance angle and numerical aperture of optical fiber
8. Explain the production of nano materials by ball milling method

Hall Ticket Number : \square

Code: 1GC14

B.Tech. I Year Supplementary Examinations March 2021

Mathematics-I

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five questions
All Questions carry equal marks (14 Marks each)

1. Solve $(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}$.
2. Solve $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$.
3. A rectangular box open at the top is to have volume of 32 cubic ft . Find the dimensions of the box requiring least material for its construction.
4. \quad Trace the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$
5. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing into polar coordinates.
6. Find the inverse Laplace transform of $\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}$.
7. Solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$.
8. Find the directional derivative of $f(x, y, z)=x y^{3}+y z^{3}$ at the point $(2,-1,1)$ in the direction of a vector $\bar{i}+2 \bar{j}+2 \bar{k}$.
