B.Tech. I Year Supplementary Examinations March 2021
 Mathematics-I
 (Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find the orthogonal trajectories of the family of curves $r^{n}=a^{n} \cos n \theta$

OR
2. Solve $\left(D^{3}+1\right) y=e^{-x}+\cos (2 x-1)$

UNIT-II

3. Verify Rolle' theorem for $f(x)=e^{-x} \sin x$ in $[0, \pi]$.

OR
4. Verify the Meclaurin's theorem for $f(x)=(1-x)^{\frac{5}{2}}$ with Lagrange's form of remainder up to 3 terms with $\mathrm{x}=1$.

UNIT-III

5. Trace the curve $y^{2}(2 a-x)=x^{3}$

OR

6. Change of order of integration and hence evaluate the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$

UNIT-IV

7. Find the Laplace transform of periodic function

$$
f(t)=\left\{\begin{array}{ll}
1, & 0<t<a / 2 \\
-1, & a / 2<t<a
\end{array}\right\} \text { And } f(t+a)=f(t) .
$$

OR

8. Solve $y^{11}+2 y^{1}+5 y=e^{-t}, y(0)=0, \quad y^{1}(0)=1 \quad$ using Laplace transform technique.

UNIT-V

9. Find the directional derivative of $2 x y+z^{2}$ at $(1,-1,3)$ in the direction of $\bar{i}+2 \bar{j}+3 \bar{k}$.

OR
10. Verify Gauss divergence theorem for $\bar{F}=\left(x^{3}-y z\right) \bar{i}-2 x^{2} y \bar{j}+z \bar{k}$ taken over the surface of cube bounded by the planes $x=y=z=a \quad \& \quad x=y=z=0$.

