Hall Ticket Number: Code: 4GC14 B.Tech. I Year Supplementary Examinations January 2022 Mathematics-I (Common to All Branches) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************
B.Tech. I Year Supplementary Examinations January 2022 Mathematics-I (Common to All Branches) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************
Mathematics-I (Common to All Branches) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************
(Common to All Branches) Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************
Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I
1. The temperature of the body drops from 100°c to 75°c in ten minutes when the
surrounding air is at 20°c temperature. What will be its temperature after half an hour? 14M OR
2. Solve $x \frac{dy}{dx} + y = x^3 y^6$
UNIT-II
3. If $a < b$, prove that $\frac{b-a}{\left(1+b^2\right)} < \tan^{-1}b - \tan^{-1}b < \frac{b-a}{\left(1+a^2\right)}$ using Lagrange's Mean value
theorem. Deduce the following:
(i) $\frac{f}{4} + \frac{3}{25} < \tan^{-1}\left(\frac{4}{3}\right) < \frac{f}{4} + \frac{1}{6}$ (ii) $\frac{5f + 4}{20} < \tan^{-1}\left(2\right) < \frac{f + 2}{4}$
OR
4. Obtain the maclaurins series expansions of the following function
(i) e^x (ii) $\sin x$ (iii) $\cosh x$ 14M
5. Trace the curve $r = a(1 + \cos x)$
OR 14M
6 Find the same of the manifest become deal by the manufactor 2 A 1 2 A
Find the area of the region bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ 14M
7. $I \left\{ a^{2t} + At^3 - 2\sin 3t + 3\cos 3t \right\}$
$\frac{L}{e} + 4i - 2\sin 3i + 3\cos 3i$ OR
8. Using Convolution theorem, find $L^{-1}\left\{\frac{s}{\left(s^2+a^2\right)^2}\right\}$
$(s^2 + a^2)$
UNIT-V
9. Find the angles between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point
(2,-1,2)
OR
Using Green's theorem evaluate $\int_{c} (2xy - x^2) dx + (x^2 + y^2) dy$ where 'c' is the closed
curve of the region bounded by $y = x^2$ and $y^2 = x$

Page 1 of 1