Hall	Ficke	et Number :										
Code	e: 40	GC15								J	R-14	
	В	.Tech. I Y	ear Su	Math	en	tary Exe natical mon to	Me	thoc		ember	2017	
		arks: 70 Il five units	by cho			questio	n frc *		ach unit		ime: 3 Hou 70 Marks	
1.	a)	Show that are incons		quations :	x + :		IT–I 3,3 <i>x</i>	+ y - 2	2z = -2 ar	ad $2x + 4$	y + 7z = 7	7M
	b)	Reduce th	e matrix	x to Eche	elon	form an	d finc	the r	ank of A=	$\begin{bmatrix} 2 & -2 & 0 \\ 4 & 2 & 0 \\ 1 & -1 & 0 \\ 1 & -2 & 0 \end{bmatrix}$	0 6 0 2 0 3 1 2	7M
						0	R					
2.		Find the $A = \begin{bmatrix} 6 & -2 \\ -2 & 3 \\ 2 & -2 \end{bmatrix}$	ງ	values a	and	corresp	ondiı	ng Ei	gen vect	ors of th	ne matrix	
3.		Reduce the	e quadra			$x^2 + 5y^2 +$ transform	natio	-	+2zx-2x	y to Cano	nical form	14M 14M
4.	a)	Show that	the Fig	en value	s of	0 a Hermit		natrix	are real			7M
	b)	Show that	•							IS.		7M
	/					-	T–III					
5.	a)	Find the ro	ots of x	$x^3 - x - 1 = 0$	us			metho	d			7M
	b)	Find the re by false po			equa			= 0 CC	prrect to 3	significar	nt figures,	7M
6.	a)	The values	: Of sin r	are dive	n he		R differ	ent va	lues of r	Find sin 30	5 0	
0.	u)		x	30°		35°			45°	50°]	
			$y = \sin x$	0.5		0.5736		428	0.7071	0.7600		7M
	b)	Given the t	-				2.0					7 111
	- /		x	15	0	152		154	156			
			$y = \sqrt{x}$	12.2	47	12.329) 1	2.410	12.49			
		Evaluat	e √155	using La	gra	nge's inte	erpol	ation	formula			7M

Page **1** of **2**

		UNIT–IV	
7.	a)	Find the least squares parabolic fit $y = a + bx + cx^2$	
		x-3-113y15515	7M
	b)	Calculate the value $\int_{0}^{1} \frac{x}{1+x} dx$ correct to 3 significant figures taking 6 intervals by	
		Trapezoidal rule	7M
		OR	
8.	a)	Given $\frac{dy}{dx} = 1 + xy$, $y = 1$ at $x = 0$ compute $y(0.1)$ correct to 4 decimal places using	
		Taylor series method.	7M
	b)	Use Picard's method to approximate y when $x = 0.1$, $x = 0.2$ for	
		$\frac{dy}{dx} = x + y^2 \text{ where } y = 0 \text{ at } x = 0$	7M
		UNIT–V	
9.		Expand $x \sin x$ in a Fourier series in $(0, 2f)$	14M
		OR	
10.	a)	Solve $x(y-z)p + y(z-x)q = z(x-y)$	7M
	b)	Solve the equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + \sim$, where $u(x, 0) = 6e^{-3x}$	7M

Hall	Ticke	et Number :														
Code	e: 40	G111						1	_]	I	J	Ţ			R-14	
	B.Tech. I Year Supplementary Examinations December 2017															
	Programming in C and Data Structures															
Max	(Common to CSE and IT) Max. Marks: 70 Time: 3 Hours															
		all five units	by cho	oosing	g one		estio ****	n fro	om e	ach	uni	†(5		-		
			_				UNI	[1								
1.	a)	Explain SDL	•													7M
	b)	Explain diffe	erent cla	assifica	ation	of co	mput OF	-	ystem	าร						7M
2.	a)	What is a co	nstanť		ain th	e diff			es of	cons	stants	s in (2			7M
	⊆, b)	Describe sta		•				•••						ram.		7M
	,					· · ·	υΝΙΤ						1 0			
3.	a)	Explain with	examp	oles, Ic	gical	bitwi	se op	perat	tors.							7M
	b)	What are pro	e-test a	nd po	st-tes	t loo	ps? E	Expla	ain the	em w	ith e	xam	ples.			7M
							OF	R								
4.		Write a progeter elements.	gram to	read	3×3	matr	ix ele	emer	nts ar	nd pr	int th	ne su	um o	f dia	igonal	14M
		elements.					UNIT	_111								1411
5.	a)	Compare ca	all by v	alue a	nd ca				_ ce pa	rame	eter i	bass	ina t	echn	niaues	
-	-)	when param	•			•			•				5		1	7M
	b)	Explain abo	ut stora	ge cla	sses.											7M
							OF									
6.		Write a C pr	•								-	arra	iy of	elerr	nents.	9M
	b)	What are the	e advar	ntages	and			•	s of re	ecurs	sion?					5M
7.		What is a	otruotu	ro2 E	voloi				alara	inii	ioliz				a tha	
7.	a)	What is a structure ele			хріаі		w ic	ue	Clare	, 1111	lalize	e al	iu a	LLES	s ine	7M
	b)	Differentiate	betwe	en tex	t and	bina	ry file	es.								7M
							OF	R								
8.	a)	Write a C p linear search	•	to se	arch	for a	a give	en el	lemei	nt in	the	integ	jer a	rray	using	7M
	b)	What do yo some examp		•	-	ny or		deta		erent	type	es of	fsor	ting?	Give	7M
9.	a)	Discuss the	implem	nentati	on of	que	ues u	sing	array	/S.						7M
	b)	Describe the	e opera	tions o	on a s	tack	with	exar	nples	5.						7M
							OF	R								
10.	a)	Give the ste	•	proce	edure	for	perfo	rmin	g ins	ertio	ns o	n do	ubly	linke	ed list	7M
	b)	With an example		xplain	the ir	serti	on o	berat	tion o	n sin	alv li	nker	d list.			7M
	- /						**	2.1			5,					• •

ł	Hall	Ticket Number :	
C	Cod	e: 4GC14	
		B.Tech. I Year Supplementary Examinations December 2017 Mathematics-I (Common to All Branches)	
		Time: 3 Hours nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
۱.	a)	Solve $xy(1+xy^2)\frac{dy}{dx} = 1$	7M
	b)	A body originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the temperature of the air being $40^{\circ}C$. What will be the temperature of the body after 40 minutes from the original? OR	7M
2.	a)	Solve $(D^3 - D)y = 2x + 1 + 4\cos x + 2e^x$	7M
	b)	Using the method of variation of parameters, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$	7M
3.	2)		
5.	a)	Verify Rolle's theorem for $f(x) = (x+2)^3 (x-3)^4$ in (-2,3)	7M
	b)	In a plane triangle, find the maximum value of cosAcosBcosC OR	7M
4.	a)	Verify Lagrange's mean value theorem for $f(x) = (x-1)(x-2)(x-3)$ in (0,4)	7M
	b)	Given $x + y + z = a$, Find the maximum value of $x^m y^n z^p$	7M
		UNIT–III	
5.	a)	Trace the curve $a^2y^2 = x^2(a^2 - x^2)$	7M
	b)	Find the area lying between the parabola $y = 4x - x^2$ and the line $y = x$. OR	7M
6.	a)	Change the order of integration and evaluate $\int_{0}^{a} \int_{x/a}^{\sqrt{x/a}} (x^{2} + y^{2}) dx dy$	7M
	b)	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	7M
7	2)		
7.		Find the Laplace transform of $f(t) = t-1 + t+1 $, $t \ge 0$	7M
	b)	Apply convolution theorem to evaluate $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$ OR	7M
8.		Solve $\frac{d^2x}{dt^2} + 9x = \cos 2t$, if $x(0) = 1$, $x\left(\frac{f}{2}\right) = -1$	14M
		UNIT-V	
9.	a)	Show that $\nabla^2(r^n) = n(n+1) r^{n-2}$	7M
	b)	Evaluate $\int_{S} F \cdot ds$ where $F = 4xI - 2y^{2}J + z^{2}K$ and S is the surface bounding the	7M
		region $x^2 + y^2 = 4$, $z = 0$ and $z = 3$	
0		OR	1 4 4 4
0.		Verify Green's theorem for $\int_C (xy + y^2) dx + x^2 dy$, where C is bounded by $y = x$ and $y = x^2$	14M

Page **1** of **1**

Hall T	Ficke	et Number :													
Code	e: 40	GC12 R-14													
	В	.Tech. I Year Supplementary Examinations December 2017													
		Engineering Physics													
Max		rks: 70 (Common to All Branches) Time: 3 Hou	Irc												
	-	all five units by choosing one question from each unit (5 x 14 = 70 Marks													
		******** UNIT–I													
1.	a)	Explain Newton's rings experiment by reflection to calculate the wavelength													
		of a monochromatic light.	5												
	b)	Derive Einstein's coefficients in LASERS.	5												
	c)	Write the applications of optical fibers in industries and in medical field.	4												
		OR													
2.	a)	Give the theory of Fraunhoffer diffraction due to single slit.													
	b)	Explain population inversion. Mention important applications of LASERS	4												
	c)	Derive the expression for acceptance angle and Numerical Aperture of an Optical fiber.	5												
		UNIT–II													
3.	a)	Derive an expression for inter-planar spacing in cubic system.													
	b)	Define Miller Indices and mention the steps involved. Sketch (110) & (001) the planes in a cube.													
	c)	Define point defects? Explain different types of point defects.	4												
		OR													
4.	a)	Describe with suitable diagram the Laue method of X-ray diffraction and give the consequences													
	b)	Explain different types of line defects. How the burger's vector is used to find the edge and screw dislocations?													
	c)	Write note on production of ultrasonics by piezoelectric method.	4												
		UNIT–III													
5.	a)	What are matter waves? Explain their properties.	4												
	b)	Show that the energies of a particle in 1-D potential box are quantized. Explain the physical significance of wave function.													
	c)) Calculate the de Broglie wavelength associated with an electron when it is raised to a potential of 1600 V.													
		OR													
6.	a)	What are drawbacks of classical free electron theory of metals? How are these are removed by the application of quantum states?	5												
	b)	Show that the Kronig - Penney model leads to existence energy bands in solids.	5												
	c)	Give the classification of solids into metals, semiconductors and insulators on the basis of band theory of solids.	4												

UNIT-IV

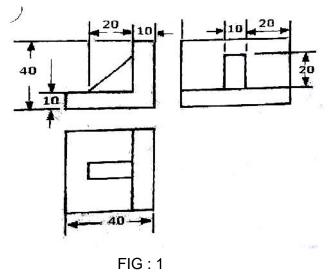
7.	a)) Describe drift and diffussion currents in a semiconductor. Derive their expressions.								
	b)	Derive the equation of continuity equation for electrons.								
	c)	Draw I-V characteristic curve of a PN junction diode and explain.	3M							
		OR								
8.	a)	Explain the origin of magnetic moment in atoms. Find the magnetic dipole moment due to orbital and spin motions of an electron.	5M							
	b)	Explain hysteresis of a ferromagnetic materials.	4M							
	c)	Explain the classification of magnetic materials.	5M							
		UNIT-V								
9.	a)	Explain Meissner effect. Write notes on magnetic levitation.	5M							
	b)	Describe BCS theory of superconductivity.	5M							
	c)	Write applications of superconductors.	4M							
		OR								
10.	a)	Explain the basic principles of nanomaterials.	5M							
	b)	Describe the process of "sol-gel" and "chemical vapour deposition" method of fabrication of nanomaterials.	6M							
	c)	Write the applications of nanomaterials.	3M							

Hall ⁻	Ticke	et Number :										
Code	Code: 4G513											
Coue	B.Tech. I Year Supplementary Examinations December 2017											
		Engineering Drawing										
		(Common to EEE, ECE, CSE and IT)										
		arks: 70 Time: 3 Hours										
A	\nsw	rer all five units by choosing one question from each unit (5 x 14 = 70 Marks)										
		UNIT-I										
1.	a)	Draw a parabola when the distance between its focus and directrix is 50mm.										
	,	Also draw a tangent and a normal at a point 70mm from the directrix.										
	b)	Draw an ellipse having major axis is equal to 100 mm and the minor axis is										
		equal to 70 mm by using concentric circle method.										
		OR										
2.		Draw an epi-cycloid of rolling circle of diameter 40 mm which rolls outside										
		another circle (base circle) of 150 mm diameter for one revolution. Draw a										
		tangent and normal at any point on the curve. 14										
		UNIT–II										
3.	a)											
		the projectors as 25mm on the same reference lines.										
		A – 20mm above HP and 30mm in front of VP										
		B – 20mm above HP and 30mm behind VP										
		C – 20mm below HP and 30mm behind VP D – 20mm below HP and 30mm in front of VP										
	b)	An 80mm long line PQ is inclined at 30 deg to V.P and is parallel to H.P. The										
		end P of the line is 20mm above the H.P and in front of the V.P, draw the projection of the line.										
		OR										
4.		A line AB, 70mm long, has its end A 15mm above HP and 20mm in front of VP. It is inclined at 30° to HP and 45° to VP. Draw its projections 14										
5.		A regular pentagon of 30 mm sides is resting on HP on one of it's sides while										
5.		it's opposite vertex (corner) is 30 mm above HP. Draw projections when side										
in HP is 30° inclined to VP.												
		OR										
6.	a)	A Square plane with a 40mm side has it's surface parallel to and 20mm										
		above the HP. Draw It's Projections, when (i) a side is parallel to VP										
		(ii) a side is inclined at 30° to VP and (iii) All sides are equally inclined to VP. 7										
	b)	A Pentagonal plane with a 30mm side has an edge on the HP the surface of										
		the Plane is inclined at 45° to the HP. Draw It's Projections? 7										

UNIT-IV

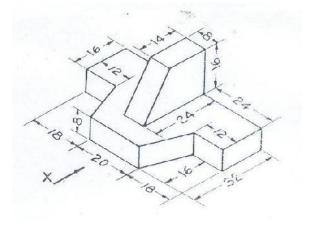
- 7. a) A Hexagonal Prism having a base with a30 mm side and 75 mm long axis, has an edge it's base on the HP. Its axis is Parallel to the VP and inclined at 450 to the HP Draw its projections?
 - b) A Square Pyramid, having base with a 40 mm side and 60mm axis is resting on its base on the HP. Draw its Projections when (i) a side of the is parallel to the VP and (ii) A side of the base is inclined at 30^o to the VP

OR


7M

7M

A cone 40 mm diameter and 50 mm axis is resting on one generator on HP which makes 30^o inclination Draw its projections?
 14M


9. Figure:1 shows the orthographic projections of a Solid. Draw the Isometric view of the given solid.

14M

OR

Draw the following views of the object shown pictorially: (i) Front view.
 (ii) Top view. (iii) Side view.

14M

Hall 7	Ficke	et Number :												Г			1	
Code	e: 4 G	GC13	_[L		. <u>]</u>]						R- 1	4		
		B.Tech. I Y	′ear (Sup	-			-				5 De	ecem	ber	2017			
						-		-	Che Il Brc		-							
-		arks: 70									-				Time: (-	
Ans	swei	r all five uni	ts by	chc	oosir	ng oi		Ues *****		from	ead	ch u	nit (5	x 14	. = 70 M	Marks)	
								UNI	Γ—Ι									
 a) What is the principle of EDTA titration? Briefly describe the es of water by EDTA method. 									e estir	nate	of hard	dness	10M					
	b)	What are th					reak	-poin	t chlo	orina	tion?						4M	
	2)	i i i ai ai ai ai ai		carre	.900	0. 5	oun	•	OR									
2.	a)	Explain the	boile	r tro	uble	s, sca	ale a	ind c	austi	c em	brittle	emer	nt in de	etails			8M	
	b)	Why is calg	gon co	ondit	ionir	ıg be	tter t	han	phos	phate	e cor	nditio	ning?				6M	
								UNIT										
3.	a)	How is NIC			•				plain	with	cell	react	ion.				7M	
	b)	Write a brief note on H ₂ -O ₂ fuel cell. OR														7M		
4.	a)	Discuss the	mec	hani	sm (of che	emic		-	ctroc	hem	ical (orrosi	ion			7M	
ч.	b)	Write a brie											5011031	011.			7M	
	2)				outri	cure	·	UNIT]								
5.	a)	What is syr	nthetic	rub	ber?	' Is v	ulcar	nizati	ion e	ssent	tial fo	or all	synthe	etic r	ubbers	?	7M	
	b)	Distinguish	therm	nopla	astic	s and	d the	rmos	settin	g pla	stics	•					7M	
									OR									
6.	a)	Discuss the	• •			• •											7M	
	b)	What are polymers w			• •	•		Dis	cuss	pos	sible	cat	egorie	s of	condu	ucting	7M	
								UN	IIT–I\	/								
7.	a)	Calculate the gross and net calorific values of coal having the following																
		compositions, carbon = 85%, hydrogen = 8 %, Sulphur = 1 %, nitrogen = 2 %, ash = 4 %, latent heat of steam = 587 cal/gm.														6M		
	b)																	
	-	various by product.														8M		
0		What is a m	athatia	not	r ol0	Llow	ia it		OR	urad	ь , , D	oraiı			r		714	
8.	a) b)	What is syr		•							•	Ū	•			a and	7M	
	D)	mention the	-	-					•		•			α αρ	apparatus and			
									UNI	T–V								
9.	a)	Explain the process du								xing	of th	e ra	w mat	erials	s by th	e dry	7M	
	b)	What are I	-							pallir	na s	trenc	oth and	d po	rosity (of the	7 101	
	2)	refractories				Елри		non		pain	ig, c		gen an	a po			7M	
									OR									
10.	a)	Write short (i) Clou					/ing	prop	erties	s of lu	Ibrica	ants:						
		(i) Cloc (ii) Fla:			•												7M	
	b)	Explain the			•		plos	ive.										
	,	(i) Prim					•											
		(ii) Low	explo	osive	es or	prop	ellar										7M	
								***								_		