Hall	Tick	et Number :	
		R-15	
004		M.C.A. I Semester Supplementary Examinations June 2018	
		Computer Programming	
		arks: 60 Time: 3 Ho	
Ansv	wer	all five units by choosing one question from each unit (5 x 12 = 60 Mark	.s)
		UNIT–I	
1.	a)	What is Algorithm? Explain different types of algorithms?	6M
	b)	Give brief description of history of programming languages	6M
2.	a)	OR What are Control Structures in c language? Explain different types of control	
۷.	a)	structures?	6M
	b)	What are arrays? Differentiate between single dimensional and multi-	
		dimensional arrays with a suitable example?	6M
0	-)	UNIT-II	
3.	a) b)	Explain String handling mechanism in c language with suitable examples?	5M
	b)	Write a c program to check whether the given string is palindrome or not? OR	7M
4.	a)	What are Functions? Explain the advantages of using functions?	6M
	b)	Explain Call by reference mechanism of functions with a suitable example	6M
		UNIT–III	
5.	a)	What is Object Oriented Programming Paradigm? Explain the characteristics	CN 4
	b)	of Object oriented Programming paradigm? Draw and Explain basic structure of C++ program?	6M
	b)		6M
6.		Write a CPP program to add two number using Pure Virtual Functions	12M
		UNIT–IV	
7.	a)	What are Constructors and Destructors? Explain the properties of a Constructor?	7M
	b)	Define Inline functions? Explain the advantages and disadvantages of inline	EN4
		functions? OR	5M
8.	a)	Explain function overloading and overriding concepts of c++ with a suitable	
		example?	7M
	b)	Explain static binding and early binding?	5M
0	c)	UNIT-V Explain Cut Stream Classes and Hierarchy	e M
9.	a) b)	Explain C++ Stream Classes and Hierarchy Write a Simple CPP program for read and write a file	6M 6M
	U)	OR	OIVI
10.	a)	Explain Exception handling model in C++	6M
	b)	Explain various file operators	6M

			UNIT–I								
1.	a)	State the axioms of probability.			4M						
	b)	A random variable X has the followin	ig probabili	ty distribution.							
		X 1 2 3 4	5 6	7 8							
		f(X) K 2K 3K 4K 5	5K 6K	7K 8K							
		Find the value of i. K ii. Mean iii.	Variance	iv. P(X 2) v. P(2 X 5)	8M						
			OR								
2.	a)	State and prove Baye's Theorem.			4M						
	b)	In a bolt factory machines A, B, C m the output and 6%, 3% and 2% of t found to be defective. Find the p	the defecti	ve. A bolt is drawn at random and							
		machine A and (ii) machine B.			8M						
			UNIT–II								
3.		Show that Mean and Mode of a norm	nal distribu	tion are same.	12M						
			OR								
4.		In a test on 2000 electric bulbs it want normally distributed with an average of hours. Estimate the number of bulbs less than 2160 hours (ii) less than 195	f life of 204 likely to bu	0 hours and standard deviation of 60 Irn for (i) more than 1920 hours but	12M						
5.		Consider all possible samples of size with replacement. Calculate (i) Mea the population (iii) Sampling distri- distribution of Means (v) Standard Verify the results.	n of the peribution of deviation of	ppulation (ii) Standard deviation of Means (iv) Mean of Sampling							
~	-)		OR								
6.	a)	Find 95% confidence limits for the mean of a normality distribution population from which the following sample was taken 15, 17, 10, 18, 16, 9, 7, 11, 13, 14.									
	b)	400 articles from a factory are exa Construct 95% confidence interval.	amined ar	d 3% are found to be defective.	6M						
			UNIT–IV								
7.	a)	Explain type-I and type-II errors and	testing of r	null hypothesis.	6M						
	b)	A random sample from a company's a certain kind of machinery were file and 13 days. Use the level of sign	ed, respec ificance α=	tively in 10, 12, 19, 14, 15, 18, 11							
		average such orders are filed in 10 d	lays.		6M						

Max. Marks: 60

Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 12 = 60$ Marks)

Code: 5P2C13

M.C.A. I Semester Supplementary Examinations June 2018 **Probability and Statistics**

Hall Ticket Number :

R-15

6IVI

8. To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measure the IQ as follows: test the hypothesis with a reasonable test at the level of significance of 0.05.

	-			U	NIT-V						
Wives	106	98	87	104	116	95	9	69	108	85	12M
Husbands	117	105	97	105	123	109	86	78	103	107	

9. The following is the distribution of hourly number of trucks arriving at company's warehouse;

No. of Trucks	0	1	2	3	4	5	6	7	8
Frequency	52	151	130	102	45	12	5	1	2

Find the Mean of this distribution, and using it as parameter λ , fit a Poisson distribution. Test for goodness of fit at the 0.05 level of significance.

12M

10. The following data represents the monthly sales (in Rs) of a certain retail store in a leap year. Examine if there is any seasonality in the sales 610, 560, 635, 605, 625, 620, 630, 625, 580, 600, 615 and 615.

12M