

Code: 20DC11T

M.C.A. I Semester Supplementary Examinations November 2021 Probability and Statistics

Max. Marks: 60
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

Marks CO BL

UNIT-I

1. A problem is given to four students A, B, C, and D. Probabilities of solving them independently are $2 / 3,2 / 5,1 / 4,3 / 4$.lf all of them try to solve the problem, what is the probability that the problem is solved

OR

2. A fair coin is tossed until a head or five tails occurs. Find the expected number E of tosses of the coin.

12M CO1 L2

UNIT-II

3. Fit a Poisson distribution for the following data and calculate the expected frequencies.

x	0	1	2	3	4
$f(x)$	109	65	22	3	1

4. The mean and standard deviation of a population are 11,795 and 14,054 . What can one assert that 95% confidence about the maximum error if $\bar{x}=11.795, n=50$.
[^0]
UNIT-III

5. A random sample of size 144 is taken from an infinite population having the mean 75 and variance 225 . What is the probability that \bar{x} will be between 72 and 77

OR
6. A random sample of 400 items is found to have mean of 82 and standard deviation of 18 . Find 95% confidence limits for the mean of the population from which the sample is drawn

12 M CO3 L2

UNIT-IV

7. The gain in weight of two random samples of rats fed on two different diets A and B are given below. Examine whether the difference in mean increases is significant

Diet-A	13	14	10	11	12	16	10	8	
Diet-B	7	10	12	8	10	11	9	10	11
OR									

8. Fit a Poisson distribution to the following data and for its goodness of fit at level of significance 0.05 level of significance.

x	0	1	2	3	4	5	6	7
f	3005	366	210	80	28	9	2	1
UNIT-V								

9. Barber A takes 15 minutes to complete one haircut. Customers arrive in his shop at an average rate of one every 30 minutes. Barber B takes 25 minutes to complete one haircut and customers arrive at his shop at an average rate of one every 50 minutes. The arrival processes are Poisson and the service firms fallow an exponential distribution
(a) Where would you expect a bigger Queue?
(b) Where would you require more time waiting included to complete a haircut?

OR

10. A bank plans to open a single server drive-in banking facility at a certain Centre. It is estimated that 20 customers will arrive each hour on hour on average, it is requires 2 minutes to process a customer's transaction.
Determine
a) The proportion of time that the system will be idle
b) On the average, how long a customer will have to wait before reaching the server.
c) The fraction of customers who will have to wait.
\square

Code: 20DF11T

M.C.A. I Semester Supplementary Examinations November 2021

Mathematical Foundations of Computer Science

Max. Marks: 60
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

1. a) Explain the term tautology? Show that $[(p \rightarrow q) \rightarrow r] \rightarrow[(p \rightarrow q) \rightarrow p \rightarrow r)]$ is tautology
b) Prove that for any three prepositions $[(P \vee Q) \rightarrow R]<=>\left[(P \rightarrow R)^{\wedge}(Q \rightarrow R)\right]$

OR

2. a) Obtain the principal disjunctive normal form of ($\sim P \vee \sim Q) \rightarrow\left(\sim P^{\wedge} R\right)$
6M 1 L5
b) Show that $R \quad(P \quad Q)$ is a valid conclusion from premise $P Q, Q \rightarrow R$, $P \rightarrow M$ and $\sim M$.

UNIT-II

3. a) Let $A=\{1,2,3\}$. Determine whether the following relations are Reflexive, Symmetric and Transitive defined on the set A
i) $R=\{(1,2),(2,1),(1,3),(3,1)\}$
ii) $S=\{(1,1),(2,2),(3,3),(2,3)\}$
iii) $T=\{(2,3),(3,4),(2,4)\}$
b) Construct the Hasse diagram represented with positive divisors of 36 ?
6M 2 L3

OR
4. a) Define a Transitive Closure? Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,1),(2,3),(3,4)$, $(4,2)$ \} Find the Transitive closure of R.
b) Define Equivalence relation? Let $A=\{1,2,3,4\}$ and $R=\{(1,1),(1,2),(2,1)$, $(2,2),(3,4),(4,3),(3,3),(4,4)\}$ be a relation on A. Verify that R is an equivalence relation.

UNIT-III

5. a) Find the co-efficient of $x y z^{2}$ in the expansion of ($\left.2 x-y-z\right)^{4}$
b) A total amount of Rs 1500 is to be distributed to 3 poor students A, B, C of a class. In how many ways the distribution can be made in multiples of Rs 100 (i) if everyone of these must get at least Rs 300? (ii) If A must get at least Rs. 500, and B and C must get at least Rs. 400 each?

OR

6. a) Explain the concept of Pigeon-Hole Principle with examples
b) In a sample of 100 logic chips, 23 have a defect D1, 26 have a defect D2, 30 have defect D3, 7 have the defects D1 and D2, 8 have defects D1 and D3, 10 have D2 and D3 and 3 have all the 3 defects, Find the number of chips having
i) At least 1 defect
ii) no defect

6M
UNIT-IV
7. Solve the recurrence relation

$$
a_{n}=6 a_{n-1}-12 a_{n-2}+8 a_{n-3}, \text { given } a_{0}=1, a_{1}=4, a_{2}=28
$$

8. Find the generating function for the recurrence relation $a_{n+1}-a_{n}=3 n, n \geq 0$ and $\mathrm{a}_{0}=1$, Hence solve the relation.

UNIT-V

9. a) Is there a simple graph with $1,1,3,3,3,4,6,7$ as the degrees of its vertices?
b) Explain
i) Planar Graph
ii) Chromatic number of a graph
iii) Spanning tree.
10. Explain Depth First Search Algorithm with an example.
\square
Hall Ticket Number :
Code: 20DF13T
R-20

M.C.A. I Semester Supplementary Examinations November 2021 Relational Database Management Systems

Max. Marks: 60
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

1. a) Explain the main characteristics of the database approach versus the file processing approach?
b) Explain the different types of data models with examples?
6M 1 L2
OR
2. a) Discuss about different types of attributes with examples?
6M 1 L6
b) Draw an ER-diagram of an Airline reservation system, taking into account at least five entities. Indicate all keys, constraints and assumptions that are made?
6M 1 L3

UNIT-II

3. a) Discuss about domain relational calculus?
b) Explain about join and division operations in relational algebra?
6M 2 L6
6M 2 L2

OR

4. Explain in detail about structure of Relational Database?
12M 2 L2

UNIT-III

5. a) Explain the format of basic SQL query in detail with examples?
6M 3 L2
b) List and explain about aggregate functions supported by SQL?
6M 3 L2
OR
6. a) What is multi valued dependency? Illustrate 4 NF with an example?
6M 3 L2
b) State BCNF. How does it differ from 3NF?
6M 3 L4

UNIT-IV

7. a) Draw transaction state diagram and describe each state that a transaction goes through during its execution?
6M 4 L3
b) Why the concurrency control is needed? Explain it?
6M 4 L2

OR

8. Discuss in detail about ARIES recovery technique?
12M 4 L6

UNIT-V

9. a) Explain the various indexing schemes used in database environment?
6M 5 L2
b) Describe the different types of file organization? Write their advantages and disadvantages?
6M 5 L2

OR

10. a) Demonstrate the implementation of $B+$ trees?
$6 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$
b) Distinguish between static hashing and dynamic hashing?
$6 \mathrm{M} \quad 5 \quad \mathrm{~L} 4$
Hall Ticket Number :
R-20
Code: 20DF14T
M.C.A. I Semester Supplementary Examinations November 2021
Computer Organization
Max. Marks: 60
Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO BL
UNIT-I1. a) Write about Combinational and Sequential circuits.6M CO1 L1
b) Design a combinational circuit with three inputs x, y, z and three outputs A, B, C. When the binary output is $0,1,2$, or 3 , the binary output is one greater than the input. When the binary output is $4,5,6$, or 7 , the binary output is one less than the input. 6M CO1 L1
OR
11. a) What is full adder? Design a full adder circuit by constructing truth table. $8 \mathrm{M} \mathrm{CO2}$ L2
b) Show that a JK flip-flop can be converted to a D flip-flop with an inverter between the J and K inputs. 4M CO2 L2
UNIT-II3. a) Explain Memory hierarchy with the help of a suitable diagram.6 M CO2 L2
b) Explain the concept of memory connection to CPU with neat diagram 6M CO2 L2
OR
12. What is cache memory? Explain types of mapping functionalities in cache memory. 12M CO2 L2
UNIT-III
12M CO2 L2
OR
13. Discuss the different types of addressing modes 12 M CO3 L3
UNIT-IV
14. a) Explain various types of interrupts. $6 \mathrm{M} \mathrm{CO2}$ L2
b) Explain Conditional and unconditional transfer instructions with suitable examples 6 M CO3 L3
OR
15. Explain the shift and rotate instructions with suitable examples. 12M CO3 L3
UNIT-V 12M CO2 L2
OR
16. a) Describe different Modes of transfer. 7 M CO2 L2
b) What are the various Peripheral devices? Explain briefly. 5 M CO2 L2

[^0]: 12M CO2 L3

