Hall Ticket Number :						R-2
Code: 20DF12T						K-2

M.C.A. I Semester Supplementary Examinations November 2021

Data Structures and Algorithms

Max. Marks: 60 Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x12 = 60 Marks)

	Ansı	**************************************	60 Mai	KS J	
			Marks	СО	BL
		UNIT-I			
1.	a)	Write short notes on efficiency of an algorithm.	6M	CO1	L3
	b)	What do you mean by recursion? What conditions should be mandatory for			
		writing a recursive function?	6M	CO1	L2
		OR			
2.	a)	Write short notes on analysis of an algorithm.	6M	CO1	L3
	b)	What is an Abstract Data type (ADT)? Explain.	6M	CO1	L2
		UNIT-II			
3.	a)	What are the linear data structures? Give some examples	6M	CO2	L2
	b)	Define queue? Explain about queue operations and its applications.	6M	CO2	L4
		OR			
4.	a)	Compare array and linked list with suitable examples.	6M	CO2	L4
	b)	Briefly explain about stack using linked list	6M	CO2	L2
		UNIT-III			
5.	a)	Define Binary Tree. Name and explain with suitable example the following terms:			
		i) Root node			
		ii) Left sub-tree and Right sub-tree	014		
	L١	iii) Depth of tree.	6M	CO3	L2
	b)	Explain threaded binary tree with an example. What is its advantage?	6M	CO3	L4
^	- \	OR			
6.	a)	What is a Hash function? What are its characteristics? List the different hash functions used.	6M	CO3	L2
	b)	Discuss briefly about multi-key file organization and access methods.	6M	CO3	L4
	D)	UNIT-IV	Olvi	003	L4
7.	a)	Discuss in detail about binary tree traversal.	6M	CO4	L2
٠.	a) b)	Define AVL tree and how it different from other trees? Explain with an example.		CO4	L2 L4
	D)	OR	Olvi	CO4	L4
8.	a)	Explain with suitable examples, BFS and DFS traversal of a graph.	6M	CO4	L4
0.		Define shortest path algorithm. Explain Dijkstra algorithm with an example.		CO4	
	b)	UNIT-V	OIVI	CO4	L4
9.	a)	Write a program to sort the elements of an array using selection sort method			
		with an example.	6M	CO5	L3
	b)	Perform Merge sort with the following: 15, 5, 6, 24, 75, 3, 50, 43, 8, 2	6M	CO5	L3
		OR			
10.	a)	Sort the following sequence of numbers using Insertion sort: 14,18,1,2,9,6,7,3	6M	CO5	L3
	b)	Distinguish between Sequential and Binary search methods with suitable examples.	6M	CO5	L4
		END			

На	II Ticket Number	:							_		\neg	
Co	de: 20DC11T								R-	·20		
	M.C.A. I S	iemeste			•			s Novem	ber 20	21		
٨	Лах. Marks: 60		Probo	ibility (ana	Statis	IICS		Time	: 3 Ho	ıırc	
	nswer any five fu	II questic	ns by cho	osing or	ne qu	estion	from e	each unit	_			
				****	****					Manle	00	ы
				UNIT-I						Marks	СО	BL
1.	A problem is giv	en to fou	r students		and [D. Prob	abilitie	s of solvir	g them			
	independently ar				hem tı	ry to so	lve the	problem,	what is			
	the probability th	at the pro	blem is so							12M	CO1	L2
2.	A fair coin is tos	end until	a hoad or	OR five tails	occur	e Find	the ex	reacted nu	mbor E			
۷.	of tosses of the		a ricau oi	iive talis	occui	3. I IIIU	uic cx	ipecied no	IIIDEI L	12M	CO1	L2
				UNIT-II								
3.	Fit a Poisson distri	ibution for	1	<u>-</u>	ı	ı	1	ed frequend	cies.			
		χ f(γ)	109	65	2 22	3	1			12M	CO2	L3
		f(x)	109	OR	22	3	I			I Z IVI	CO2	L3
4.	The mean and s	standard	deviation of	_	ulation	are 1	1,795 a	and 14,054	I. What			
	can one asse	ert that	95% co	onfidence	abo	out th	e ma	ximum e	error if			
	x = 11.795, n = 50	0.								12M	CO2	L3
_	^	f -:	444 :- 1-1-	UNIT-III			. da Car	harder of				
5.	A random sampl				_			-		4014		
	75 and variance	223. VVIId	it is the pro	OR	nat x	wiii be	betwe	en 72 and	11	12M	CO3	L2
6.	A random samp	ole of 40	0 items is		to ha	ve me	an of	82 and s	tandard			
•	deviation of 18.											
	which the sample	e is drawr								12M	CO3	L2
7.	The gain in weig	ht of two		UNIT-IV		fed on :	two diff	farant diat	bne Δ a			
1.	B are given be			•								
	significant				1				1			
	Diet-A	13	14 10	11	12			8		4014		
	Diet-B	7	10 12	8 OR	10	11	9	10 11		12M	CO4	L4
8.	Fit a Poisson dis	tribution 1	o the follo	_	a and t	for its c	oodne	ss of fit at	level of			
	significance 0.05			-			,					
	X			2 3	4	5	6	7				
	f	300	05 366 2	210 80	28	9	2	1		12M	CO4	L4
9.	Barber A takes	15 minute	s to comp	UNIT-V lete one	 haircu	t. Cust	omers	arrive in h	is shop			
	at an average	rate of o	ne every	30 minu	tes. E	Barber	B take	es 25 min	utes to			
	complete one had every 50 minutes					-		-				
	an exponential d		-	3303 arc	1 0133	on and	1 1110 30	SI VICE IIIIII	3 Idilow			
	(a) Where would	you expe	ect a bigge	r Queue?	?							
	(b) Where would	you requ	ire more ti		ng incl	uded to	comp	lete a hair	cut?	12M	CO5	L3
10	A book plane to			OR	الموما	na fosil	:4	a a mtain C	lt			
10.	A bank plans to is estimated that	-	-			-	-					
	requires 2 minute							`	,			
	Determine											
	a) The proportib) On the avera			•			afora ro	aching the	SAR/Ar			
	c) The fraction							Jaorining tille	JUI VUI.	12M	CO5	L3
	•			****EI							-	

Hall Ticket Number:	
---------------------	--

Code: 20DF11T

R-20

M.C.A. I Semester Supplementary Examinations November 2021

Mathematical Foundations of Computer Science

Max. Marks: 60 Time: 3 Hours

			e: 3 H		
	Ans	wer any five full questions by choosing one question from each unit ($5x12 = ***********************************$: 60 Mc	arks)	
			Marks	СО	BL
		UNIT-I			
1.	a)	Explain the term tautology? Show that [(p q) r] [(p q) p r)] is tautology	6M	1	L2,L3
	b)	Prove that for any three prepositions $[(PVQ) R] \iff [(PR)^{(QR)}]$	6M	1	L4
		OR			
2.	a)	Obtain the principal disjunctive normal form of (~ P V ~ Q) (~ P ^ R)	6M	1	L5
	b)	Show that R (P Q) is a valid conclusion from premise P Q, Q R, P M and ~M.	6M	1	L3
		UNIT-II			
3.	a)	Let A= $\{1, 2, 3\}$. Determine whether the following relations are Reflexive, Symmetric and Transitive defined on the set A i) R = $\{(1,2),(2,1),(1,3),(3,1)\}$ ii) S = $\{(1,1),(2,2),(3,3),(2,3)\}$			
		iii) $T = \{ (2,3), (3,4), (2,4) \}$	6M	2	L3
	b)	Construct the Hasse diagram represented with positive divisors of 36?	6M	2	L6
		OR			
4.	a)	Define a Transitive Closure? Let $A=\{1,2,3,4\}$ and $R=\{(1,2), (2,1), (2,3), (3,4), (4,2)\}$ Find the Transitive closure of R .	6M	2	L1,L3
	b)	Define Equivalence relation? Let $A = \{1,2,3,4\}$ and $R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)\}$ be a relation on A. Verify that R is an equivalence relation.	6M	2	L1, L3
		UNIT-III			
5.	a)	Find the co-efficient of x yz 2 in the expansion of (2x - y -z)4	6M	3	L5
	b)	A total amount of Rs 1500 is to be distributed to 3 poor students A, B, C of a			
		class. In how many ways the distribution can be made in multiples of Rs 100			
		(i) if everyone of these must get at least Rs 300? (ii) If A must get at least Rs. 500, and B and C must get at least Rs. 400 each?	6M	3	L5
		OR	OIVI	J	LO
6.	a)	Explain the concept of Pigeon-Hole Principle with examples	6M	3	L5
	b)	In a sample of 100 logic chips, 23 have a defect D1, 26 have a defect D2, 30 have defect D3, 7 have the defects D1 and D2, 8 have defects D1 and D3, 10			
		have D2 and D3 and 3 have all the 3 defects, Find the number of chips having i) At least 1 defect ii) no defect	6M	3	
		UNIT-IV	OIVI	3	L5
7.		Solve the recurrence relation			
١.		$a_n = 6a_{n-1} - 12 a_{n-2} + 8 a_{n-3}$, given $a_0 = 1$, $a_1 = 4$, $a_2 = 28$	12M	4	L3
		OR			
8.		Find the generating function for the recurrence relation a $_{n+1}$ - a $_n$ =3n , n 0 and a $_0$ = 1, Hence solve the relation.	12M	4	L3,L4
		UNIT-V			
9.	a)	Is there a simple graph with 1, 1, 3, 3, 3, 4, 6, 7 as the degrees of its vertices?	6M	5	L4
	b)	Explain			
		i) Planar Graph ii) Chromatic number of a graph iii) Spanning tree. OR	6M	5	L2
10.		Explain Depth First Search Algorithm with an example.	12M	5	L2

END

Hall Ticket Number :							
			•			•	R-20

Code: 20DF13T

M.C.A. I Semester Supplementary Examinations November 2021

Relational Database Management Systems

Max. Marks: 60 Time: 3 Hours

		wer any five full questions by choosing one question from each unit ($5x12 = 6$. 3 1100 30 Mark		
		******	Marka	00	DI
		LIMIT I	Marks	СО	BL
1.	a)	UNIT-I Explain the main characteristics of the database approach versus the file			
••	u,	processing approach?	6M	1	L2
	b)	Explain the different types of data models with examples?	6M	1	L2
		OR			
2.	a)	Discuss about different types of attributes with examples?	6M	1	L6
	b)	Draw an ER-diagram of an Airline reservation system, taking into account at			
		least five entities. Indicate all keys, constraints and assumptions that are made?	6M	1	L3
		UNIT-II			
3.	a)	Discuss about domain relational calculus?	6M	2	L6
	b)	Explain about join and division operations in relational algebra?	6M	2	L2
		OR			
4.		Explain in detail about structure of Relational Database?	12M	2	L2
5.	a)	UNIT-III Explain the format of basic SQL query in detail with examples?	6M	3	L2
Э.	b)	List and explain about aggregate functions supported by SQL?	6M	3	L2
	D)	OR	Olvi	0	
6.	a)	What is multi valued dependency? Illustrate 4NF with an example?	6M	3	L2
	b)	State BCNF. How does it differ from 3NF?	6M	3	 L4
	,				
		UNIT-IV			
7.	a)	Draw transaction state diagram and describe each state that a transaction goes			
		through during its execution?	6M	4	L3
	b)	Why the concurrency control is needed? Explain it?	6M	4	L2
0		OR Discuss in detail about ARIES recovery technique?	12M	4	16
8.		Discuss in detail about ARIES recovery technique?	I Z IVI	4	L6
		UNIT-V			
9.	a)	Explain the various indexing schemes used in database environment?	6M	5	L2
	b)	Describe the different types of file organization? Write their advantages and			
		disadvantages?	6M	5	L2
		OR			
10.	a)	Demonstrate the implementation of B+ trees?	6M	5	L2
	b)	Distinguish between static hashing and dynamic hashing?	6M	5	L4
		****END****			

Hall Ticket Number :								
Code: 20DF14T		,				•	R-20	

M.C.A. I Semester Supplementary Examinations November 2021

Computer Organization

		******		•	
			Marks	СО	BL
		UNIT-I			
1.	a)	Write about Combinational and Sequential circuits.	6M	CO1	L1
	b)	Design a combinational circuit with three inputs x, y, z and three outputs A, B, C. When the binary output is 0, 1, 2, or 3, the binary output is one greater than the input. When the binary output is 4, 5, 6, or 7, the binary output is one less			
		than the input.	6M	CO1	L1
		OR			
2.	a)	What is full adder? Design a full adder circuit by constructing truth table.	8M	CO2	L2
	b)	Show that a JK flip-flop can be converted to a D flip-flop with an inverter			
		between the J and K inputs.	4M	CO2	L2
	,	UNIT-II			
3.	a)	Explain Memory hierarchy with the help of a suitable diagram.	6M	CO2	L2
	b)	Explain the concept of memory connection to CPU with neat diagram	6M	CO2	L2
		OR			
4.		What is cache memory? Explain types of mapping functionalities in cache memory.	12M	CO2	L2
		UNIT-III			
5.		Discuss the different types of addressing modes	12M	CO2	L2
		OR			
6.		Explain the Instruction formats of 8086.	12M	CO3	L3
		UNIT-IV			
7.	a)	Explain various types of interrupts.	6M	CO2	L2
	b)	Explain Conditional and unconditional transfer instructions with suitable			
	,	examples	6M	CO3	L3
		OR			
8.		Explain the shift and rotate instructions with suitable examples.	12M	CO3	L3
0		UNIT-V	4014		
9.		What is Priority interrupt? Explain Daisy chaining and Parallel priority interrupt.	12M	CO2	L2
40	- \	OR	→ 1. 4		
10.	a)	Describe different Modes of transfer.	7M	CO2	L2
	b)	What are the various Peripheral devices? Explain briefly.	5M	CO2	L2
		****END****			