Hall ⁻	Hall Ticket Number :					
Code	Code: 19AC12T					
	• 17	I B.Tech. I Semester Regular Examinations January 2020				
		Applied Physics				
Max.	Ma	(Common to EEE & ECE) Irks: 70 Time: 3 H	ours			
A	nsw	ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)				
		UNIT–I				
1.	a)	What is interference of light and state principle of superposition?	4M			
	b)					
		for dark and positions. OR	10M			
2.	a)		•			
	,	important engineering applications of polarized light.	4M			
	b)	Explain polarization by double refraction and write on positive and negative	;			
		crystals.	10M			
		UNIT-II				
3.	a)	Derive expression of electronic polarizability and show that electronic polarization is temperature independent process.	; 8M			
	b)		6M			
	,	OR				
4.	a)	Explain the origin of permanent magnetic moment and define Bohr magnetron.	9M			
	b)	Discuss Weiss theory of ferromagnetism.	5M			
		UNIT–III				
5.	a)		7M			
	b)	Derive expression for propagation of electromagnetic waves in non-conducting media.) 7M			
		OR				
6.	a)	With the help of block diagram, explain an optical fiber communication system	1			
		and discuss the function of each block.	8M			
	b)	· · · · · · · · · · · · · · · · · · ·	6M			
7.	2)	UNIT-IV Distinguish among conductors, somiconductors and insulators based on band	1			
7.	a)	Distinguish among conductors, semiconductors and insulators based on banc diagrams.	6M			
	b)	· ·				
	in intrinsic semiconductors. 8M					
8.	a)	OR What is Hall effect? Obtain expression for Hall voltage and discuss applications of	f			
0.	u)	Hall effect.	10M			
	b)	Distinguish between direct and indirect band gap semiconductors.	4M			

4M

7M

7M

UNIT–V

- 9. a) Define superconductivity and explain important properties of superconductors. 10M
 - b) Discuss dc and ac Josephson effects in superconductors.

OR

- 10. a) What are nano materials? Discuss mechanical, optical and magnetic properties of nano materials.
 - b) Discuss what top-down approach is and describe synthesis of nano particles using ball mill method.

		СО	Blooms Level
Q.1.	a)	CO1	L1
	b)	CO1	L2
Q.2.	a)	CO1	L3
	b)	CO1	L2
Q.3.	a)	CO2	L3
	b)	CO2	L2
Q.4.	a)	CO2	L3
	b)	CO2	L2
Q.5.	a)	CO3	L2
	b)	CO3	L2

		СО	Blooms Level
Q.6.	a)	CO3	L2
	b)	CO3	L3
Q.7.	a)	CO4	L2
	b)	CO4	L3
Q.8.	a)	CO4	L3
	b)	CO4	L2
Q.9.	a)	CO5	L2
	b)	CO5	L2
Q.10.	a)	CO5	L2
	b)	CO5	L2

Hall 7	Ticket Number :						
Code	Code: 19AC11T R-19						
	I B.Tech. I Semester Regular Examinations January 2020 Algebra and Calculus						
	(Common to All Branches)						
	Time: 3 Hour nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	S					
	UNIT–I						
1. a)	Reduce the matrix $A = \begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$ to Echelon form and hence find its rank.	7M					
b)	Show that the system of equations $x+2y+2z=2$, $3x-2y-z=5$, $2x-5y+3z=-4$,						
,	x+4y+6z=0 is consistent and hence solve it.	7M					
	OR						
2.	Find the eigen values and eigen vectors of the following matrix						
	$A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}.$	14M					
	UNIT–II						
	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ c & 2 & -1 \end{bmatrix}$ and hence find A^{-1} and A^{4}						
3.	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ and hence find A^{-1} and A^{4}						
	of the matrix.	14M					
	OR						
4.	Reduce the Quadratic form $3x^2 + 5y^2 + 3z^2 - 2xy - 2yz + 2zx$ to canonical form by an orthogonal transformation and state the nature of the quadratic form. Also find matrix of the transformation.	14 M					
	UNIT-III						
5. a)	If $z = f(x+ay) + W(x-ay)$, prove that $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$.	7M					
b)	Discuss the maxima and minima of $f(x, y) = x^3 y^2 (1 - x - y)$.	7M					

OR

- 6. a) If $x = r \sin_{\#} \cos W$, $y = r \sin_{\#} \sin W$, $z = r \cos_{\#} \sin W$ that $\frac{\partial(x, y, z)}{\partial(r, \#, W)} = r^2 \sin_{\#}$. 7M
 - b) A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions of the box requiring least material for its construction.7M

UNIT–IV

- 7. a) Obtain the Taylor's series expansion of sin2x about $x = \frac{f}{4}$.
 - b) Trace the curve $x^3 + y^3 = 3axy$.

OR

- 8. a) Obtain the Maclaurin's series expansion of $log(1 + sin^2 x)$ up to the term containing x^6 .
 - b) Trace the curve $r^2 = a^2 \cos 2_{\#}$.

UNIT–V

- 9. a) Evaluate $\iint_R y dx dy$ where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
 - b) Prove that $S(m, \frac{1}{2}) = 2^{2m-1}S(m, m)$.

OR

10. a) By changing the order of integration of $\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin px \, dx \, dy$, show that $\int_{0}^{\infty} \frac{\sin px}{x} \, dx = \frac{f}{2}$. **7M**

b) Show that $\Gamma(1/2) = \sqrt{f}$.

		CO	Blooms Level
1.	a)	CO1	L3
	b)	CO1	L3
2.		CO1	L3
3.		CO2	L3
4.		CO2	L3
5.	a)	CO3	L3
	b)	CO3	L6
6.	a)	CO3	L3
	b)	CO3	L3

		СО	Blooms Level
7.	a)	CO4	L2
	b)	CO4	L2
8.	a)	CO4	L2
	b)	CO4	L2
9.	a)	CO5	L3
	b)	CO5	L3
10.	a)	CO5	L3
	b)	CO5	L3

7M 7M

7M

7M

7M

7M

Code: 19A1117 I.B.Tech. I Semester Regular Examinations January 2020 Essentials of Electrical & Electronics Engineering (Common to EEE & ECE) Max. Marks: 70 Time: 3 Ho Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	•	ian	Ticket Number : R-19	9
Essentials of Electrical & Electronics Engineering (Common to EEE & ECE) Max. Marks: 70 Time: 3 Ho Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) Image: Image	Co	de:	19A411T	•
(Common to EEE & ECE) Time: 3 Ho Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) UNIT-I 1. a) Distinguish between ideal and practical sources. b) State and explain Ohm's law, mention the limitations. OR 2. a) Derive the expression for energy stored by the inductor. b) Determine the color coding of following resistors. i) 560 ii)1k iii) 2.2k iv) 10k UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem.			c ,	
 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) 				
 a) Distinguish between ideal and practical sources. b) State and explain Ohm's law, mention the limitations. OR 2. a) Derive the expression for energy stored by the inductor. b) Determine the color coding of following resistors. i) 560 ii)1k iii) 2.2k iv) 10k UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 	Mo			
 1. a) Distinguish between ideal and practical sources. b) State and explain Ohm's law, mention the limitations. OR 2. a) Derive the expression for energy stored by the inductor. b) Determine the color coding of following resistors. i) 560 ii)1k iii) 2.2k iv) 10k UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. A 4 Ω 10 Ω 10 Ω 2 Ω 2 Ω 3 Ω 2 Ω 3 Ω 2 Ω 3 Ω 2 Ω 3 Ω 2 Ω 3 Ω 2 Ω 3 Ω 2 Ω 3 Ω 2 Ω 3 Ω 3		A)
 b) State and explain Ohm's law, mention the limitations. OR 2. a) Derive the expression for energy stored by the inductor. b) Determine the color coding of following resistors. i) 560 ii)1k iii) 2.2k iv) 10k UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. A 4 0 100 100 100 100 100 100 100 100 100				
 OR 2. a) Derive the expression for energy stored by the inductor. b) Determine the color coding of following resistors. i) 560 ii) 1k iii) 2.2k iv) 10k 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. a) Offer the equivalent resistance between A and B terminals in the following network. c) Determine the source transformation technique with an example. e) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 	1.	a)	Distinguish between ideal and practical sources.	
 2. a) Derive the expression for energy stored by the inductor. b) Determine the color coding of following resistors. i) 560 ii) 1k iii) 2.2k iv) 10k UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 		b)	State and explain Ohm's law, mention the limitations.	
 b) Determine the color coding of following resistors. i) 560 ii)1k iii) 2.2k iv) 10k UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. a) Determine the equivalent resistance between A and B terminals in the following network. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 			OR	
 i) 560 ii) 1k iii) 2.2k iv) 10k UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. A 4 0 4 0 4 0 4 0 2 0 4 0 2 0 4 0 2 0 0 0 0	2.	a)	Derive the expression for energy stored by the inductor.	
 UNIT-II 3. a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. 		b)	Determine the color coding of following resistors.	
 a) State and explain Kirchhoff's laws with an example. b) Determine the equivalent resistance between A and B terminals in the following network. 			i) 560 ii)1k iii) 2.2k iv) 10k	
 b) Determine the equivalent resistance between A and B terminals in the following network. A and A and B terminals in the following and the following through a state st	•	,		
 network. A A A A A A A A A A A A A A A A A A A	3.	,		
 4 n 10 n 4 n 4 n 4 n 4 n 2 n 8 n 4 n 2 n 0 n 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 5 n 20 n 10 n 10 n 10 n 10 n 10 n 10 n 10		b)	•	ng
 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 			10.0	
 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 				
 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 			> < >	
 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 			$\mathbf{z}_{\mathbf{z}_{0}}$	
 OR 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 				
 4. a) Explain about the source transformation technique with an example. b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. 			B B	
b) State Superposition theorem and determine the current flowing through 10 resistor in the following circuit using Superposition theorem. $ \begin{array}{c} $			OR	
resistor in the following circuit using Superposition theorem. $20 v + 10 \Omega$ + 10 v	4.	a)	Explain about the source transformation technique with an example.	
20 V + 10 P 10 P		b)	State Superposition theorem and determine the current flowing through 10)
			resistor in the following circuit using Superposition theorem.	
			5Ω 20Ω ΔΔΔΔ	
			$20 V + $ 10Ω $+ 10 V$	
			••	

- Explain the operation of P-N Junction diode with neat diagrams. 5. 8M a)
 - Differentiate between Avalanche breakdown and Zener breakdown. b) 6M

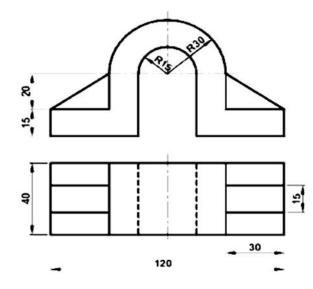
Code:	19A411T
-------	----------------

6.	a)	Explain about the diffusion capacitance and transition capacitance.	7M			
	b)	Explain how Zener diode can be used as voltage regulator.	7M			
		UNIT-IV				
7.	a)	Construct and explain the operation of half wave rectifier with neat waveforms.	7M			
	b)	A 60Ω load resistance is connected across a half wave rectifier. The input supply voltage is 230V (rms) at 50 Hz. Determine the average output voltage, RMS output voltage, average load current and PIV rating.	7M			
		OR				
8.	a)	Explain the working of center tapped full wave rectifier with capacitor filter.	7M			
	b)	A 230V,50Hz voltage is applied to the primary of a 5:1 step down center tapped transformer used a in the full wave rectifier having a load of 900 . If the diode resistance and the secondary coil resistance together has a resistance of 100 , Determine :				
		i) Average output voltage ii) RMS output voltage iii) Rectifier Efficiency.	7M			
		UNIT–V				
9.	a)	Explain the construction and operation of NPN transistor.	7M			
	b)	Explain the Input and Output characteristics of transistor in CE configuration.	7M			
		OR				
10.	a)	With block diagram explain the operation of function generator.71				

- 10. a) With block diagram explain the operation of function generator.
 - b) Explain the operation of CRO with neat block diagram.

		СО	Blooms Level
1.	a)	CO1	L2
	b)	CO1	L2
2.	a)	CO1	L2
	b)	CO1	L2
3.	a)	CO2	L3
	b)	CO2	L3
4.	a)	CO2	L3
	b)	CO2	L3
5.	a)	CO3	L2
	b)	CO3	L2

		СО	Blooms Level
6.	a)	CO3	L2
	b)	CO3	L2
7.	a)	CO4	L2
	b)	CO4	L2
8.	a)	CO4	L2
	b)	CO4	L2
9.	a)	CO5	L2
	b)	CO5	L2
10.	a)	CO5	L2
	b)	CO5	L2


	Ha	Il Ticket Number :	1
(Code	e: 19A312T-B	
	cou	I B.Tech. I Semester Regular Examinations January 2020	
		Engineering Graphics & Design	
		(Electronics and Communication Engineering)	
		. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********	
		UNIT-I	
1.		A cricket ball thrown reaches a maximum height of 9 m and falls on the ground at a	
		distance of 25 m from the point of projection. Draw the path of the ball. What is the angle of projection?	14M
		OR	
2.		Construct a conic when the distance of its focus from its directrix is equal to 50 mm and	
		its eccentricity is 2/3. Name the curve, mark its major axis and minor axis. Draw a	
		tangent at any point, P on the curve.	14M
		UNIT–II	
3.		Draw an epicycloid having a generating circle of diameter 50 mm and a directing curve	
		of radius 100 mm. Also draw a normal and a tangent at any point M on the curve.	14M
		OR	
4.	a)	Draw an involute of a hexagon of 30 mm side.	7M
	b)	Draw an involute of a circle of diameter 30 mm.	7M
		UNIT–III	
5.		A top view of a 75 mm long line AB measures 65 mm, while the length of its front view	
		is 50 mm. Its one end A is in the HP and 12 mm in front of the VP. Draw the projections	
		of AB and determine its inclination with HP and the VP.	14M
		OR	
6.		A line AB, 90 mm long, is inclined at 30° to the HP. Its end A is 12 mm above the HP	
		and 20 mm in front of the VP. Its front view measures 65 mm. Draw the top view of AB	
		and determine its inclination with the VP.	14M
		UNIT-IV	
7.		A regular hexagon of side 20 mm has one of its side on H.P. and inclined at 30° to VP.	4 4 5 4
		Its surface makes an angle of 60° with the ground. Draw its projections.	14M
•		OR THE CONTRACT OF THE OR	
8.		A circular lamina of 60mm diameter rests on HP on a point 1 on the circumference. The lamina is inclined to HP such that the top view of it is an ellipse of major axis 60mm and	
		minor axis 35mm. The top view of the diameter through the point 1 makes an angle of	
		45° with VP. Draw the projections.	14M
		UNIT-V	
9.		A pentagonal prism with side of base 25mm and axis 50mm long lies on one of its	
		rectangular face on HP, such that its axis is inclined at 45° to VP. Draw the projections.	14M

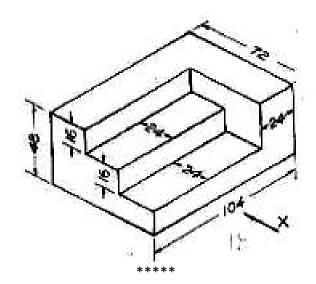
Г

Т

1

10. The front and top views of an object are shown in below figure. Draw its isometric view.

		СО	Blooms Level
1.		CO1	L2
2.		CO1	L1
3.		CO2	L3
4.	a)	CO2	L2
	b)	CO2	L2
5.		CO3	L3
6.		CO3	L3
7.		CO4	L2
8.		CO4	L3
9.		CO5	L3
10.		CO5	L4


	Hall	Ticket Number :															٦
L C	Code: 19A312T-A														R-19		
Ū	I B.Tech. I Semester Regular Examinations January 2020																
	Engineering Graphics & Design																
N	(Common to EEE & ECE) Max. Marks: 70 Time: 3 Hours																
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)																
	UNIT–I																
1.								14M									
		method and rang			Ju			OR									
2.		Construct a rectai	ngula	r hy	perbo	ola w	hen	a poi	nt P	on it	is at	a dis	stance	e of 3	30 mm a	and	
		40 mm respective	ely froi	m th	e two	o asy	mpto	otes.									14M
0		A sizele of 40 mm	al' a ma					T–II				د مانه		Drev			
3.		A circle of 40 mm traced by a point of the second s					•		•			•					
		Draw a normal an	id tan	gent	to th	ne cu	irve a	at a p	oint 2	25 m	m fro	om th	e stra	aight	line.		14M
					_			OR									
4.	a)	Draw the involute															7M
	b)	Draw the involute	ofac	CITCle	e of r	adius											7M
5.	a)	Two points P and	Q Ivir	na ir	the	VP a		T–III) mm		rt. Th	ne ho	rizon	tal di	stanc	e betw	een	
		the points is 60 m	nm. P	oint	P is	15 r	nm a	bove	the	HP.	Find	the	heigh	t of t			
		above the HP and							-								6M
	b)	A 60 mm long line the line are 10 mm		•													
		line and determine							loopt		51y. E	, and	ino pi	0,00			8M
								OR									
6.		A line AB of 70 m Its front view and		•													
		projections of the	•										•	very.	Diaw	uie	14M
							UNI	T–IV									
7.		A regular pentago											•		•		
		is perpendicular to pentagon when its										aw tr	ie pro	Jecti	ons or	the	14M
								OR									
8.	a)	A rectangular plar The longer edges															
		shortest edge nea		-										n au			7M
	b)	A Hexagon of 3 c	m sid	e is	resti	ng o	n a c	orne	r in ⊦	IP ar	nd its	surf	ace is	s 30°	incline	d to	
		HP and perpendic	cular t	o VI	P. Dr	aw tł	ne pr	oject	ions.								7M

UNIT-V

9. A pentagonal prism with side of base 30mm and axis 60mm long is resting with an edge of its base on HP, such that the rectangular face containing that edge is inclined at 60° to HP. Draw the projections of the prism when its axis is parallel to VP.

OR

10. Convert the following isometric view to orthographic view

14M

		со	Blooms Level
1.		CO1	L1
2.		CO1	L2
3.		CO2	L3
4.	a)	CO2	L2
	b)	CO2	L2
5.	a)	CO3	L2
	b)	CO3	L2
6.		CO3	L3
7.		CO4	L3
8.	a)	CO4	L2
	b)	CO4	L2
9.		CO5	L3
10.		CO5	L3

	Hall	Ticket Number :	_							
	ode	: 19A511T R-19								
	I B.Tech. I Semester Regular Examinations January 2020 Problem Solving and C programming (Common to All Branches)									
Μ		Marks: 70 nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT–I	S							
1.	a)	Define Algorithm. Explain the characteristics of algorithm	7M							
	b)	List and explain briefly about various computer languages	7M							
		OR								
2.	a)	What is meant by flow chart? Explain the symbols used in flowchart with an example.	7M							
	b)	Write a C Program to find maximum number among three numbers using conditional operator.	7M							
_		UNIT-II								
3.		Write a program in C language to perform the matrix multiplication. OR	14M							
4.	a)	Explain conditional statements with an example.	7M							
	b)	Write a c program to find whether the number is prime number or not.	7M							
	,	UNIT-III								
5.	a)	Define string. Explain declaration of string. Explain any three string handling functions								
		with neat syntax and example	6M							
	b)	What is recursion? Explain with an example	8M							
6.		OR Explain all types of preprocessor directives with example	14M							
0.			1-1101							
7.	a)	What is pointer? How to initialize and declare pointer variables? Explain with examples.	7M							
	b)	Write a program to swap to numbers using pointers and functions.	7M							
		OR								
8.	a)	What are the functions for dynamic memory management? Explain.	7M							
	b)	How do you use a pointer as a formal parameter of a function which is designed to manipulate an array? Explain.	7M							
-		UNIT-V								
9.	a)	Distinguish between structures and unions.	8M							
	b)	Write a C program to maintain a record of n students with four fields (Roll no, name, marks and grade). Print the student details	6M							
10.	a)	OR Define file. Write a C program to write character to a file and reading character from file.	8M							
	b)	Give brief description about the various modes of a file opening.	6M							
	5)	ene she accorption about the various modes of a nic opening.	0101							

		СО	Blooms Level
1.	a)	CO1	L1
	b)	CO1	L2
2.	a)	CO1	L1
	b)	CO1	L3
3.		CO2	L3
4.	a)	CO2	L2
	b)	CO2	L3
5.	a)	CO3	L1
	b)	CO3	L2

		СО	Blooms Level
6.		CO3	L2
7.	a)	CO4	L1
	b)	CO4	L3
8.	a)	CO4	L2
	b)	CO4	L1
9.	a)	CO5	L4
	b)	CO5	L3
10.	a)	CO5	L3
	b)	CO5	L1