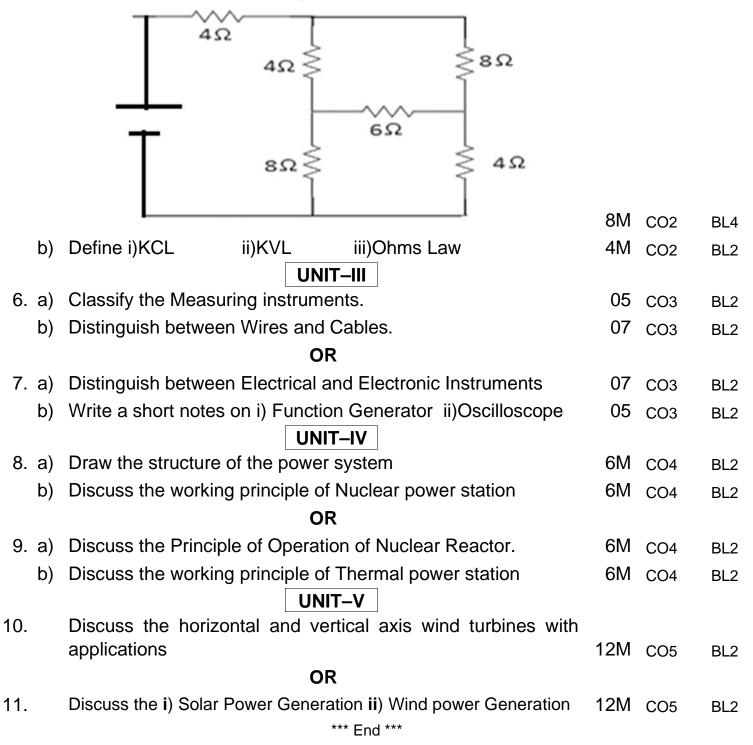
Hall Ticket Number :			
Code: 20AC12T	R-	20	
I B.Tech. I Semester Regular & Supplementary Examinations A	pril/Ma	y 202	2
Applied Physics			
(Common to EEE, ECE and AI&ML) Max. Marks: 70	Time:	3 Ho	Urs
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$) С	ю ^Е	Blooms Level
a) Define double refraction in polarization. Give example.	C	D1	Lover L1
b) List the types of polarization in dielectrics	C	D 2	L1
c) State Poynting theorem of electromagnetic theory.	C	D 3	L1
d) Mention the applications of Hall Effect in semiconductors.	C	D 4	L1
e) Why magnetic flux expels from a superconductor in superconducting state?	the Co) 5	L3
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x	12 = 60 🛚	Marks)
	Marks	CO	Blooms Level
UNIT–I			
2. a) Explain Newton's rings in interference of light.	4M	CO1	L2
b) Deduce an equation for wavelength of light from			
Newton's rings.	8M	CO1	L3
OR			
3. a) Discuss Fraunhofer diffraction due to single slit experiment.		CO1	L2
b) Obtain maxima and minima conditions for single sli			
experiment.	6M	CO1	L3
4. a) Explain frequency dependance of polarization ir	h		
dielectrics.	6M	CO2	L2
b) Write a short note on ferroelectricity?	6M	CO2	L1
OR			
5. a) Define magnetic susceptibility and permeability.	4M	CO2	L1
5. a) Define magnetic susceptibility and permeability.b) Classify magnetic materials based on their properties.	4M 8M		L1 L4

Code:	20AC12T
-------	---------


			Code: 2	20AC12T	
		UNIT–III			
6.	a)	Discuss Stroke's theorem and prove it.	8M	CO3	L2
	b)	Write electromagnetic wave propagation Maxwell equations.	4M	CO3	L2
		OR			
7.	a)	Define acceptance angle and numerical aperture of a			
		fibre.	4M	CO3	L1
	b)	Explain propagation of light through an optical fibre.	8M	CO3	L2
		UNIT–IV			
8.	a)	Classify solids based on energy bands.	6M	CO4	L4
	b)	Calculate density of majority charge carriers of p-type			
		semiconductor.	6M	CO4	L3
		OR			
9.	a)	Define Hall Effect in semiconductors.	4M	CO4	L1
	b)	Derive an equation for Hall Coefficient.	8M	CO4	L3
		UNIT–V			
10.	a)	Discuss the properties of superconductors.	6M	CO5	L2
	b)	Explain Meissner's effect of superconductors.	6M	CO5	L2
		OR			
11.	a)	What is the basic significance of nanomaterials?	4M	CO5	L1
	b)	Explain the properties of nanomaterials.	8M	CO5	L2
	,	*** End ***			

Hall Ticket Number :									Ì				
										Γ	R-2	20	
Code: 20A511T I B.Tech. I Semester	Regular	r 8. Si ir	nnle	mer	ntarv	/ Exc	imr	natio	าทร	L An	ril/Mav	2022	
	blem So	-								νp	n, way	LOLL	
	(C	Commo	on to	All	Bran	che	s)		•				
Max. Marks: 70			****	****	k						Time: (3 Hou	ſS
Note: 1. Question Paper co 2. In Part-A, each qu	uestion car	ries Tw	o ma	rk.		art-]	B)						
3. Answer ALL the	questions i	in Part	-A an	d Pa i	rt-B								
		(Com		<u>RT-A</u> ry qı		n)							
1. Answer ALL the	following	l short	answ	ver q	uesti	ons	((5 X	2 = ′	10IV	1)	CO	Blooms Level
a) What is the d Show both no				•						w o	chart?	1	L2
b) What is the di	fference	betwe	en v	while	e an	d do	o-wł	nile?	I			2	L2
c) Write the synt	ax of strl	len()	and	strc	at()	fun	ctior	าร.				3	L1
d) What is pointe	er and de	eclare	poin	nter	array	/?						4	L1
e) What is the di	fference	betwe	en s	struc	cture	an	d ur	nion'	?			5	L1
			PAF	RT-B									
Answer <i>five</i> questio	ons by choo	osing oi	ne qu	estio	n froi	m ea	ch u	nit (!	5 x 1	2 =	60 Mark	(s)	
											Marks	СО	Blooms
		UN	T_I										Level
a) What are the v	arious s			olve	ar	orob	olem	ו? E	Expl	ain			
them by taking a		•			•				•		6M	1	L2
b) Draw a flow cha	art to find	d the l	arge	est o	f thr	ee i	านท	nber	s in	C.	6M	1,5	L2
		0	R										
a) What are the va			f op	erat	ors	in C). E	xpla	in a	any			
four types with e	-					\mathbf{c}	-	la :	، ما ا		6M	1	L2
b) How can we clas	ssiry dille			τγρε	es in	C.	Ехр	lain	the	m.	6M	1	L2
a) Explain selectio	n sort al	lgorith	m w	ith a	an ez	xam	ple				6M	2,5	L2
b) What is an Arra	•		eclar	e a	nd ir	nitia	lize	an	Arr	ay.			
Explain with an	example		П								6M	2,5	L3
a) Evolain Binary	Sparch A	O Maorit		Nith	on é	יסעב	mnl	0			614	0 F	10
a) Explain Binary S		JUUII	11111	villi	ant	-va	npi	с.			6M	2,5	L2

	LX		ode: 20	A511T	
	D)	You are given the height H (in metres) and mass M (in kilograms) of your friend. The Body Mass Index (BMI) of a person is computed as M/H ² .			
		Report the category into which your friend falls, based on his BMI:			
		Category 1: Underweight if BMI 18 Category 2: Normal weight if BMI ∈{19, 20,, 24}			
		Category 3: Overweight if BMI ∈{25, 26,, 29} Category 4: Obesity if BMI 30	6M	2,5	L3
		UNIT-III			
6.	a)	What are the advantages of using Functions? How do we declare Functions in C.	6M	3	L2
	b)	Write a program to find the factorial of a given number using recursion.	6M	3,5	L3
		OR			
7.	a)	Explain various storage classes in C with an example.	6M	4	L2
	b)	What is the role of Preprocessor in the Compilation process and explain two preprocessor directives.	6M	4	L2
8.	a)	Define void pointer. Where we use this concept? Give an example for it.	6M	4	L2
	b)	Write a program to exchange two values using pointers. OR	6M	4	L3
9.	a)	Distinguish between array of pointers and pointer to array with examples.	6M	4	L2
	b)	List the functions used in the dynamic memory allocation. Explain each function with an example.	6M	4	L2
		UNIT–V			
10.	a)	Describe about various file opening modes in C.	6M	4	L2
	b)	Write a program to compare two files, printing the first line where they differ.	6M	4,5	L3
		OR			
11.	Ĩ	What are the different ways to access the members of structure elements in C. Give example for each case?	6M	4	L2
	b)	Write a C program to perform average of three number using files. Assume input numbers are existing in a file with name input.txt and result need to be saved in another			
		file with the name output.txt *** End ***	6M	4,5	L3

	Н	lall Ticket Number :			
			R-2	0	
	_	→ B.Tech. I Semester Regular & Supplementary Examinations Apri	il/May	2022	
	I	Basic Electrical Engineering	ii//way	2022	
		(Electrical and Electronics Engineering)			
	Μ	ax. Marks: 70	Time: 3	Ηουι	rs
	No	ote: 1. Question Paper consists of two parts (Part-A and Part-B)			
		 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
		<u>PART-A</u>			
		(Compulsory question)			
		1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$	C	:O E	Blooms Level
		a) Define Linear and Non Linear Elements.	С	01	BL1
		b) Find the equivalent capacitance of Parallel combination	of		
		Three Capacitances with 2microfarads each.	С	02	BL4
		c) Necessity of SFU.	С	03	BL1
		d) What are the Components of Thermal power station?	С	04	BL2
		e) Draw the VI Characteristics of PV Cell	C	05	BL2
		PART-B			
	4	Answer <i>five</i> questions by choosing one question from each unit (5 x 12	= 60 Ma	irks)	
			Marks	СО	Blooms Level
		UNIT–I			
2.	a)	Classify the circuit elements and write the voltage, current			
		and power relations.	8M	CO1	L2
	b)	Write short notes on BH curve.	4M	CO1	L1
		OR			
3.	a)	Discuss the faradays law of electromagnetic induction with			
		neat sketch.	6M	CO1	BL2
	b)	Discuss about Cork screw rule.	6M	CO1	BL2
		UNIT–II			
4.	a)	Find the total current passed through the circuit consisting of			
		three resistors connected in parallel across the supply of 25V.			
		Where R1=12, R2=10, R3=20. Also find the current	01/	000	
	L)	passed through individual resistances R1, R2 and R3.		CO2	
	b)	Write a short notes on voltage division rule.	4IVI	CO2	BL2

5. a) Find the current supplied by the battery of 10V using star delta transformation for the given Circuit.

Hall Ticket Number :			
Code: 20AC11T	R -2	20	
I B.Tech. I Semester Regular & Supplementary Examinations A	pril/May	/ 202	2
Algebra and Calculus			
(Common to All Branches) Max. Marks: 70	Time:	3 Hoi	irs
******	11110.	01100	015
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark .			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions (5X2= 10M)	С	() [–]	Blooms Level
			Level
a) Find the rank of $A = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 4 & -8 \end{vmatrix}$			
a) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$			
$\begin{bmatrix} 0 & 4 & -8 \end{bmatrix}$	C	D1	L3
b) Define index and signature of a quadratic form.	C	D 2	L2
c) Define total derivative in partial differentiation	C	D 3	L2
d) Evaluate $\int_{x=0}^{1} \int_{y=0}^{2} \int_{z=0}^{2} x^2 yz dx dy dz$			
	C) 4	L3
e) Define beta function and explain two properties	C	D5	L2
PART-B Answer <i>five</i> questions by choosing one question from each unit(5 x	12 = 60 N	larks)
	Marks	СО	Blooms
UNIT-I			Level
2. a) Find the value of '}' such that the system			
2x + y + 2z = 0, x + y + 3z = 0, 4x + 3y + z = 0			
has non trivial solutions	6M	CO1	L3
 b) Find the Eigen values and Eigen vectors of the matrix 			
$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$			
$A = \begin{bmatrix} 1 & 5 & 1 \end{bmatrix}$			
	6M	CO1	L2
OR			
$\begin{bmatrix} 1 & 3 & 4 & 3 \end{bmatrix}$			
3. a) Reduce the matrix $\begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{bmatrix}$ to normal form and fine	d		
its rank.		CO1	L3

b) Find the Eigen values and the corresponding Eigen vectors

of
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

(UNIT-II)
4. Verify Cayley – Hamilton theorem for
 $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find A^{-1} and A^{6}
 $12M \quad Coz$ L3
(DR)
5. Reduce the quadratic form
 $Q = 6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_3x_1$
into canonical form and find its nature.
(UNIT-III)
6. a) Expand the Taylor's series expansion of *Sinx* in powers of
 $(x - \frac{f}{4})$
(M) Co3 L3
(DR)
6. a) Expand the Taylor's series expansion of *Sinx* in powers of
 $(x - \frac{f}{4})$
(M) Co3 L3
(DR)
6. a) Expand the Taylor's particle expansion of *Sinx* in powers of
 $(x - \frac{f}{4})$
(M) Co3 L3
(DR)
7. a) If $U = f(2x - 3y, 3y - 4z, 4z - 2x)$ then find the
value of $\frac{1}{2} \frac{\partial U}{\partial x} + \frac{1}{3} \frac{\partial U}{\partial y} + \frac{1}{3} \frac{\partial U}{\partial z}$
(DR)
7. a) If $x = r Sin_u CosW$, $y = r Sin_u SinW$, $z = r Cos_u$
(DR)
7. a) A rectangular open box of capacity 32 cubic units is to be
prepared. Find the dimensions of the box, to minimize the
cost of painting outside.
(UNIT-IV)
8. a) Evaluate $\int \int (x^2 + y^2) dx dy$ in the positive quadrant for
which $x + y \le 1$
(M) CO4 L3

Code: 20AC11T

b) Evaluate
$$\int_{y=1}^{e} \int_{x=1}^{\log y} \int_{z=1}^{e^{x}} \log z \, dz \, dx \, dy$$
OR
9. Evaluate
$$\int_{0}^{4a} \int_{x^{2}}^{2\sqrt{ax}} dy \, dx$$
by changing the order of the
integration
12M CO4
L2
10. a) Derive the relation between Beta and Gamma functions
6M CO5
L3
b) Evaluate
$$\int_{0}^{\infty} \sqrt{x}e^{-x^{2}} dx$$
6M CO5
L4
11. a)
Prove that
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$$
6M CO5
L3
b)
Evaluate
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$
6M CO5
L4
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$
6M CO5
L3
b)
Evaluate
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$
6M CO5
L4
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$