Hall	Ticket Number :			_
Code	e: 20AC11T	R-2	20	
cout	I B.Tech. I Semester Regular Examinations July 2021 Algebra and Calculus (Common to All)			
Max.	· · · ·	Time: 3	3 Hou	rs
Note:	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
	<u>PART-A</u> (Compulsory question)			
1.	Answer ALL the following short answer questions $(5 \times 2 = 10M)$		со	Blooms Level
a)	Find the eigen values of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$		1	1,2
-	Find the symmetric matrix corresponding to the quadratic form $x^2 + 6xy + 5y$	l^2	2	1,2
c)	If x= r cos Θ , y= r sin Θ then find $\frac{\partial(x, y)}{\partial(r, y)}$		3	1.2
d)	Find $\int_{0}^{1} \int_{0}^{x} xy dy dx$		4	1,2
e)	Define Gamma function		5	1
Ang	<u>PART-B</u> wer any <i>five full</i> questions by choosing one question from each unit (5 x 12) - 60 N	Iorlza)
Allsv	wer any <i>five juit</i> questions by choosing one question from each unit (5 x 12	2 – 00 Marks	CO) Blooms Level
	$\begin{bmatrix} \mathbf{UNIT} - \mathbf{I} \\ 0 & 1 & 2 & -2 \end{bmatrix}$			20101
2. a)	Reduce the matrix $\begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$ to normal form and hence find the rank.	6M	1	1,2
b)	Show that the equations $x + y + z = 6$, $x + 2y + 3z = 14$, $x + 4y + 7z = 30$ are consistent and solve them.	6M	1	1,2
3.	OR Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} -2 & 2 & -3 \end{bmatrix}$			
	$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	12M	1	1,2
	UNIT-II $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$			
4.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and	12M	2	1,2
	hence find A ⁻¹ and A ⁴			
	OR			

- Reduce the quadratic form $3x^2+2y^2+3z^2-2xy-2yz$ to the normal form by 5. 12M 2 1,2 orthogonal transformation
- UNIT-III 6. a) If $x = r \sin_{\mu} \cos \psi$, $y = r \sin_{\mu} \sin \psi$, $z = r \cos_{\mu} then show that \frac{\partial(x, y, z)}{\partial(r - \psi)} = r^{2} \sin_{\mu} \psi$ 6M 3 1,2

b) Find the maximum and minimum values of
$$xy + \frac{a^3}{x} + \frac{a^3}{y}$$
 6M 3 1,2

- 7. Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 12M 3 1,2 UNIT-IV
- 8. a) Evaluate $\int_{a}^{2a} \int_{0}^{\sqrt{2ax-x^2}} xy \, dy \, dx$ 6M 4 1,2

b) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dz \, dy \, dx$$
 6M 4 1,2

OR

9. Change the order of integration and evaluate

$$\int_{0}^{4a} \int_{x^{2}/4a}^{2\sqrt{ax}} dy \, dx \qquad 12M \ 4 \ 1,2$$

UNIT-V
10. a) Show that
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$$
 6M 5 1,2

b) Show that
$$\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$$
 where 'n' is a positive integer and
$$6M \quad 5 \quad 1,2$$
$$m > -1$$

OR

11. a) Evaluate
$$\int_{0}^{1} x^{\frac{3}{2}} (1-x^{2})^{\frac{5}{2}} dx$$
 6M 5 1,2
b) Evaluate $\int_{0}^{\frac{11}{2}} \sin^{10} x dx$ 6M 5 1,2

D) Evaluate
$$\int_{0}^{2} \sin^{10} d_{\pi}$$
 6M 5 1,2

*** End ***

							1	ı	1				
Hall Ticket Number :													
Code: 20AC12T											R-2	20	
I B.Tec	ch. I Sen	neste	er Rec	gular	Exar	nina	tion	s Ju	ly 202	21			
			pplie	-					•				
		(Coi	mmor	n to E	EE &	ECE)						
Max. Marks: 70										-	Time: 3 Hours		
Note: 1. Question Paper				*****		_							
 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 													
		(C	ompul	sory (questi	o n)							Bloom
1. Answer ALL the	followin	g sho	rt ansv	ver qu	lestio	ns	(5	X 2 =	= 10M)		СО	Leve
a) Mention any four	applicatio	ons of i	interfei	ence	in Eng	jineer	ing fi	eld.				CO1	
b) What is Bohr's ma	agneton a	and giv	ve its e	xpres	sion.							CO2	
c) State the Gauss t	heorem f	or dive	ergence	∋?								CO3	
d) Define drift and d	iffusion cu	urrents	6									CO4	
e) Write the applicat	ions of na	anoma	terials									CO5	
			P	ART-	<u>B</u>								
Answer any <i>five full</i> qu	uestions h	oy cho	osing	one qu	iestio	n froi	n ea	ch ur	nit (5 2	x 12	= 60 N	larks)
		_									Marks	со	Blooms Level

				Lever
		UNIT–I		
2.	a)	Explain interference in thin films by reflection of light.	8M	CO1
	b)	In Newton's rings experiment, if the radius of the 8 th and 12 th rings are 0.25 mm and 0.3mm respectively, find the wavelength of the light used if the radius of curvature of plano-convex lens is 100cm.	4M	CO1
		•	-1111	COT
		OR		
3.	a)	Explain diffraction grating experiment to determine the wave length of a monochromatic source.	8M	CO1
	b)	Calculate the thickness of a quarter wave plate for a monochromatic light of wave length 600nm, if the refractive indices of ordinary and extraordinary rays		
		in the medium are 1.5442and 1.5533 respectively	4M	CO1
		UNIT–II		
4.	a)	Define Ionic polarization and derive an expression for Ionic polarizability	6M	CO2
	b)	Explain Ferro magnetism through hysteresis with neat figures	6M	CO2
		OR		
5.	a)	Give the classification of magnetic materials into dia, para and ferro magnetic		
	-	materials on the basis of magnetic moment	6M	CO2
	b)	Explain in detail about the different types of polarization mechanisms in		
		dielectrics.	6M	CO2

	UNIT–III							
a)	State and explain Poynting theorem	6M	CO3					
b)	Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 & 1.498 respectively.	6M	CO3					
	OR							
a)	Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation.	6M	CO3					
b)	Discuss the application of optical fibers in Medical field and in industry as a sensor.	6M	CO3					
a)		6M	CO4					
b)	Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids	6M	CO4					
	OR							
a)	What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications.	7M	CO4					
b)	Differentiate direct and indirect band gap semiconductors with examples	5M	CO4					
a)	Explain Meissner effect. Write notes on magnetic levitation	6M	CO5					
b)	Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials.	6M	CO5					
OR								
a)	Describe BCS theory of superconductivity	6M	CO5					
b)	Discuss any one method to characterization of the nanomaterials	6M	CO5					
	a) b) a) b) a) b) a) b) a)	 a) State and explain Poynting theorem b) Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 & 1.498 respectively. OR a) Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation. b) Discuss the application of optical fibers in Medical field and in industry as a sensor. UNIT-IV a) Derive an expression for density of holes in an intrinsic semiconductor b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids OR a) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. b) Differentiate direct and indirect band gap semiconductors with examples UNIT-V a) Explain Meissner effect. Write notes on magnetic levitation b) Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials. OR a) Describe BCS theory of superconductivity 	 a) State and explain Poynting theorem b) Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 & 1.498 respectively. a) Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation. b) Discuss the application of optical fibers in Medical field and in industry as a sensor. a) Derive an expression for density of holes in an intrinsic semiconductor b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids a) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. b) Differentiate direct and indirect band gap semiconductors with examples b) Differentiate direct. Write notes on magnetic levitation c) UNIT-V a) Explain Meissner effect. Write notes on magnetic levitation b) Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials. c) R a) Describe BCS theory of superconductivity 					

*** End ***

Hall Ticket Number :			-
Code: 20A211T	R-20		
I B.Tech. I Semester Regular Examinations July 2021 Basic Electrical Engineering (Electrical and Electronics Engineering)	me: 3 I	Hour	S
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$		со	Blooms Level
a) Explain the classification of magnets?		1	L1
b) What are different types of sources? Explain		2	L1
c) What are different types of wires and cables?		3	L1
d) Explain the principle of operation of nuclear reactor?		4	L1
e) What are the different components of wind turbine?		5	L1
PART-B			
Answer any <i>five full</i> questions by choosing one question from each unit (5 x 12 =	= 60 Ma	rks)	
	Marks	CO	Blooms Level
UNIT-I			
 Briefly explain the hysteresis lop of a magnetic material, and discuss its significance? OR 	12M	1	L1
3. a) Write short note on Lenz's law?	4M	1	L1
b) Differentiate between statically induced emf, and dynamically induced emf?	8M	1	L1
UNIT-II			
4. a) Obtain the equivalent resistance R_{ab} for the circuit and use it to find current i?			
$12.5 \Omega \stackrel{>}{\geq} \qquad \stackrel{>}{\geq} 10 \Omega$			
$120 V \begin{pmatrix} + \\ - \end{pmatrix} c = 5 \Omega n \leq 30 \Omega$			
$15 \Omega \gtrless 20 \Omega$			
	8M	2	L1
b) For the circuit in fig below find voltage v_1 and v_2 ?			
$ \begin{array}{c} 2 \Omega \\ $			
$20 V + \frac{1}{2} \leq 3 \Omega$			
	4M	2	L1

4M 2 L1

OR

5. a) Use KCL to obtain the currents i_1 . i_2 and i_3 in the circuit shown in fig below?

12 mA 8 mA *i*₂ *i*₃ 9 mA

4M 2 L1

b) Calculate i_o in the circuit shown in fig below?

I,

20 Ω 60 Ω 40 Ω 24 V 10 Ω 50 Ω 20 **Ω** ww 8M 2 L3 UNIT-III 6. Explain the methods to measure Frequency and Phase. 12M 3 L1 OR Give classification of different types of instruments as per their working 7. a) principle? 6M 3 L1 Explain with the help of schematic the construction and operation of function b) 3 generator? 6M L1 UNIT-IV Explain the evolution of power system in India and present day scenario? 8M 4 L1 8. a) b) What is Nuclear fission? Explain 4M 4 L1 OR 9. Explain the layout and working principle of hydro power station? 12M 4 L1 UNIT-V 10. With the help of neat schematic explain how power is generated using wind? 5 12M L1 OR 11. With the help of neat schematic explain how power is generated using solar energy? 12M 5 L1 *** End ***

	Hall Ticket Number :			1
	Code: 20A312T-D	R-2	20	
	I B.Tech. I Semester Regular Examinations July 2021			
	Engineering Drawing			
	(Electrical and Electronics Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1) ********		3 Hours Marks)	5
		Marks	со	Blooms Level
1.	UNIT–I Draw an ellipse having a major of 110 mm and minor axis of 70 mm using the concentric circle method. Draw a tangent at any point on the curve. OR	14M	CO1	L1,L2
2.	The diameter of the directing circle is twice that of the generating circle. Show that the hypo – cycloid is a straight line. Choose the diameter of the generating circle as 50 mm.	14M	CO1	L1,L2
3.	UNIT–II Two points A and B are on H.P, the point A being 30 mm infront of V.P while B is			
З.	45 mm behind V.P. The line joining their top views makes an angle 45 ^o with xy. Find the horizontal distance between the two points. OR	14M	CO2	L1,L2
4.	A line CD, 70 mm long has its C, 20 mm above the H.P and 15 mm in front of V.P.it is inclined at 40 ^o to the V.P and 50 ^o to H.P. Draw the projections.	14M	CO2	L1,L2
5.	A semi – circular plate of 80 mm diameter, has its straight edge on V.P and inclined at 30 ^o to H.P, while the surface of the plate is inclined at 45 ^o to V.P. Draw the projections of the plate.	14M	CO3	L2, L1, L4
6.	A regular hexagon of 40 mm side has a corner on H.P. Its surface is inclined at 45° to H.P and top view of the longest diagonal through the corner on which it rests makes an angle 60° with xy. Draw its projections.	14M	CO3	L2, L1, L4
7.	Draw the projections of a cylinder of base 30 mm diameter and axis 40 mm long, which lies on H.P on a point of its rim, which its axis inclined at 30° to H.P and 35° inclined to V.P.	14M	CO4	L2,L3
8.	OR A hexagonal pyramid of base side 30 mm and axis length 50 mm rests on the H.P on one of its slant edges. The axis is contained by a plane which is perpendicular to the H.P and inclined at 45 ^o to the V.P. Draw the projections of the pyramid.	14M	CO4	L2,L3
9.	UNIT-V Draw the isometric projection of a vertical hexagonal prism of 30 mm sides and 100 mm high, when it rests on its base on the H.P with two of its faces perpendicular to the V.P.	14M	CO5	L2,L3
10.	OR Isometric view of an object is shown in the figure below. Draw the front view, top view and side view. All dimensions are given in millimeters.			

*** End ***

Y

14M CO5 L2,L3

Hall Ticket Number :			
Code: 20A511T	R-2	0	
I B.Tech. I Semester Regular Examinations June 2021 Problem Solving through C Programming (Common to All Branches)	Time of f		
Max. Marks: 70 ********	Time: 3	S HOU	IS
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$	(co ^I	Blooms Level
a) Define high level language and low level language	С	01	L2
b) Define an array. How to store elements in an array?	С	02	L2
c) Write a program to check whether the string is palindrome or not	С	03	L1
d) Compare and contrast calloc() and malloc().		04	L5
e) Give various modes of opening a file	С	05	L4
PART-B		`	
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 0$	ou Mark	S)	
	Marks	со	Blooms Level
UNIT–I 2. a) Briefly explain about the basic data types that C language supports.	6M	CO1	L5
b) What is flow chart? How it is useful in writing the programs? Explain about		001	20
different symbols in flow chart.	6M	CO1	L1
OR			
 a) Is there any difference between the pre-decrement and post decrement operators? Explain with suitable examples. 	it 6M	CO1	L2
 b) Write a pseudo code for swapping two numbers without using any temporar variable. 	y 6M	CO1	L1
4. a) Compare the use of if-else construct with that of conditional operator			
Explain with examples.	6M	CO2	L5
b) Give the control flow diagram of the for loop. How is the execution of 'for loop proceeds?	r' 6M	CO2	L4
OR			
5. a) Describe about two dimensional arrays, initializing the two dimensional arrays and accessing elements in such arrays.	al 6M	CO2	L2
 b) Write a program to find an element present in a given array using Search techniques. 	h 6M	CO2	L1
	Ра	ge 1 o	f 2

		Co	Code: 20A511T			
		UNIT–III				
6.	a)	Write a C program with recursive function that counts the number of vowels in a string.	6M	CO3	L1	
	b)	Describe the concept of functions and the mechanism of a function call. Discuss the advantages of functions	6M	CO3	L2	
		OR				
7.	a)	Explain about C Preprocessor with an example.	6M	CO3	L1	
	b)	Illustrate the storage classes extern, static and auto with an example	6M	CO3	L4	
		UNIT–IV				
8.	a)	Define a pointer. How to initialize and declare pointer variables? Explain the same with examples	6M	CO4	L2	
	b)	Write a recursive program for finding the n th Fibonacci value, using functions.	6M	CO4	L1	
		OR				
9.	a)	Differentiate user defined and predefined function. Explain with one				
		example.	6M	CO4	L2	
	b)	Explain how to pass one dimensional arrays to functions.	6M	CO4	L4	
		UNIT–V				
10.	a)	Differentiate between structures and unions, and write the syntax for nested structures.	6M	CO5	L2	
	b)	What is an enumerated data type? Explain with example.	6M	CO5	L1	
		OR				
11.	a)	Write a program to count no of words and lines in a file	6M	CO5	L1	
	b)	Describe the process of handling errors during file operations. *** End ***	6M	CO5	L2	