Code: 20AC11T
\square

| B.Tech. I Semester Regular Examinations July 2021

Algebra and Calculus

(Common to All)

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Find the eigen values of $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$

1 1,2
b) Find the symmetric matrix corresponding to the quadratic form $x^{2}+6 x y+5 y^{2}$

2 1,2
c) If $x=r \cos \theta, y=r \sin \Theta$ then find $\frac{\partial(x, y)}{\partial(r, \theta)}$
31.2
d) Find $\int_{0}^{1} \int_{0}^{x} x y d y d x$

4 1,2
e) Define Gamma function

PART-B

Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Reduce the matrix $\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$ to normal form and hence find the rank. $6 \mathrm{M} \quad 1 \quad 1,2$
b) Show that the equations $x+y+z=6, x+2 y+3 z=14, \quad x+4 y+7 z=30$ are consistent and solve them.

OR

3. Find the eigen values and the corresponding eigen vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

12M 1 1,2

UNIT-II

4. Verify Cayley-Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ and $12 \mathrm{M} \quad 2 \quad 1,2$ hence find A^{-1} and A^{4}
5. Reduce the quadratic form $3 x^{2}+2 y^{2}+3 z^{2}-2 x y-2 y z$ to the normal form by orthogonal transformation

UNIT-III

6. a) If
$x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$ then showthat $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta \quad 6 \mathrm{M} \quad 3 \quad 1,2$
b) Find the maximum and minimum values of $x y+\frac{a^{3}}{x}+\frac{a^{3}}{y}$
$6 \mathrm{M} 31,2$

OR

7. Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

UNIT-IV

8. a) Evaluate

$$
\int_{a}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}} x y d y d x
$$

b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$
6M 4 1,2

OR

9. Change the order of integration and evaluate

$$
\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} d y d x
$$

UNIT-V

10. a) Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
b) Show that $\int_{0}^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n} n \text { ! }}{(m+1)^{n+1}}$ where ' n ' is a positive integer and $6 \mathrm{M} 51,2$ $m>-1$

OR

11. a) Evaluate $\int_{0}^{1} x^{\frac{3}{2}}\left(1-x^{2}\right)^{\frac{5}{2}} d x$
$6 \mathrm{M} 51,2$
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{10} \theta d \theta$
$6 \mathrm{M} 51,2$

Code: 20AC12T
I B.Tech. I Semester Regular Examinations July 2021

Applied Physics

(Common to EEE \& ECE)
Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ Co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Mention any four applications of interference in Engineering field. CO1
b) What is Bohr's magneton and give its expression. CO 2
c) State the Gauss theorem for divergence? CO 3
d) Define drift and diffusion currents CO 4
e) Write the applications of nanomaterials. CO5

PART-B

Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

		Marks	CO	Blooms Level
	UNIT-I			
2. a)	Explain interference in thin films by reflection of light.	8M	CO1	
b)	In Newton's rings experiment, if the radius of the $8^{\text {th }}$ and $12^{\text {th }}$ rings are 0.25 mm and 0.3 mm respectively, find the wavelength of the light used if the radius of curvature of plano-convex lens is 100 cm .	4M	CO1	
	OR			
3. a)	Explain diffraction grating experiment to determine the wave length of a monochromatic source.	8M	CO1	
b)	Calculate the thickness of a quarter wave plate for a monochromatic light of wave length 600 nm , if the refractive indices of ordinary and extraordinary rays in the medium are 1.5442 and 1.5533 respectively	4M	CO1	
	UNIT-II			
4. a)	Define lonic polarization and derive an expression for lonic polarizability	6M	CO 2	
b)	Explain Ferro magnetism through hysteresis with neat figures	6M	CO2	
	OR			
5. a)	Give the classification of magnetic materials into dia, para and ferro magnetic materials on the basis of magnetic moment	6M	CO2	
b)	Explain in detail about the different types of polarization mechanisms in dielectrics.	6M	CO2	

UNIT-III
6. a) State and explain Poynting theorem 6M CO3
b) Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 \& 1.498 respectively. $6 \mathrm{M} \mathrm{CO3}$
OR
7. a) Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation. $6 \mathrm{M} \mathrm{Co3}$
b) Discuss the application of optical fibers in Medical field and in industry as a sensor. 6 M CO
UNIT-IV8. a) Derive an expression for density of holes in an intrinsic semiconductor6 M CO 4
b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids $6 \mathrm{M} \mathrm{CO4}$
OR
9. a) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. 7M CO4
b) Differentiate direct and indirect band gap semiconductors with examples 5M CO4
UNIT-V
10. a) Explain Meissner effect. Write notes on magnetic levitation 6M CO5
b) Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials. $6 \mathrm{M} \mathrm{Co5}$
OR
11. a) Describe BCS theory of superconductivity 6M CO5
b) Discuss any one method to characterization of the nanomaterials $6 \mathrm{M} \mathrm{Co5}$

Basic Electrical Engineering

(Electrical and Electronics Engineering)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)
$\begin{array}{lrrr}\text { 1. Answer ALL the following short answer questions } & (5 \times 2=10 \mathrm{M}) & \text { co } & \begin{array}{c}\text { Blooms } \\ \text { Level }\end{array} \\ \text { a) Explain the classification of magnets? } & 1 & \text { L1 }\end{array}$
b) What are different types of sources? Explain 2 L1
c) What are different types of wires and cables? 3 L1
d) Explain the principle of operation of nuclear reactor? 4 L1
e) What are the different components of wind turbine? $\quad 5 \mathrm{~L}$?

PART-B

Answer any five full questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. Briefly explain the hysteresis lop of a magnetic material, and discuss its significance?

OR
3. a) Write short note on Lenz's law?

4M 1
b) Differentiate between statically induced emf, and dynamically induced emf?

UNIT-II

4. a) Obtain the equivalent resistance R_{ab} for the circuit and use it to find current i?

b) For the circuit in fig below find voltage v_{1} and v_{2} ?

OR

5. a) Use KCL to obtain the currents $\mathrm{i}_{1} \cdot \mathrm{i}_{2}$ and i_{3} in the circuit shown in fig below?

b) Calculate i_{0} in the circuit shown in fig below?

6. Explain the methods to measure Frequency and Phase.
12M 3

OR

8M $2 \quad$ L3
7. a) Give classification of different types of instruments as per their working principle?

6M 3
b) Explain with the help of schematic the construction and operation of function generator?

6M 3

UNIT-IV

8. a) Explain the evolution of power system in India and present day scenario?
b) What is Nuclear fission? Explain
$4 \mathrm{M} \quad 4$
9. Explain the layout and working principle of hydro power station?

UNIT-V

10. With the help of neat schematic explain how power is generated using wind?

12M 5
OR
11. With the help of neat schematic explain how power is generated using solar energy?

Code: 20A312T-D

| B.Tech. I Semester Regular Examinations July 2021

Engineering Drawing

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Draw an ellipse having a major of 110 mm and minor axis of 70 mm using the concentric circle method. Draw a tangent at any point on the curve.

OR

2. The diameter of the directing circle is twice that of the generating circle. Show that the hypo - cycloid is a straight line. Choose the diameter of the generating circle as 50 mm .

UNIT-II

3. Two points A and B are on H.P, the point A being 30 mm infront of V.P while B is 45 mm behind V.P. The line joining their top views makes an angle 45° with xy . Find the horizontal distance between the two points.

OR

4. A line CD, 70 mm long has its $\mathrm{C}, 20 \mathrm{~mm}$ above the H.P and 15 mm in front of V.P.it is inclined at 40° to the V.P and 50° to H.P. Draw the projections.

UNIT-III

5. A semi - circular plate of 80 mm diameter, has its straight edge on V.P and inclined at 30° to H.P, while the surface of the plate is inclined at 45° to V.P. Draw the projections of the plate.

OR

6. A regular hexagon of 40 mm side has a corner on H.P. Its surface is inclined at 45° to H.P and top view of the longest diagonal through the corner on which it rests makes an angle 60° with xy . Draw its projections.

14M CO2
L1,L2

L2, L1,
14M CO3

UNIT-IV

7. Draw the projections of a cylinder of base 30 mm diameter and axis 40 mm long, which lies on H.P on a point of its rim, which its axis inclined at 30° to H.P and 35° inclined to V.P.

OR

8. A hexagonal pyramid of base side 30 mm and axis length 50 mm rests on the H.P on one of its slant edges. The axis is contained by a plane which is perpendicular to the H.P and inclined at 45° to the V.P. Draw the projections of the pyramid.

UNIT-V

9. Draw the isometric projection of a vertical hexagonal prism of 30 mm sides and 100 mm high, when it rests on its base on the H.P with two of its faces perpendicular to the V.P.

OR

10. Isometric view of an object is shown in the figure below. Draw the front view, top view and side view. All dimensions are given in millimeters.

\square
Code: 20A511T

R-20

I B.Tech. I Semester Regular Examinations June 2021

Problem Solving through C Programming

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Define high level language and low level language CO1 L2
b) Define an array. How to store elements in an array? CO 2
c) Write a program to check whether the string is palindrome or not CO 3
d) Compare and contrast calloc() and malloc(). CO4
e) Give various modes of opening a file CO5

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60 \mathrm{Marks}$)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I
2. a) Briefly explain about the basic data types that C language supports. $\quad 6 \mathrm{M} \quad \mathrm{CO1}$
b) What is flow chart? How it is useful in writing the programs? Explain about
different symbols in flow chart.

OR

3. a) Is there any difference between the pre-decrement and post decrement operators? Explain with suitable examples.

6M C01
L2
b) Write a pseudo code for swapping two numbers without using any temporary variable.

6M CO1

UNIT-II

4. a) Compare the use of if-else construct with that of conditional operator. Explain with examples.

6M CO2
b) Give the control flow diagram of the for loop. How is the execution of 'for' loop proceeds?

6M CO2
5. a) Describe about two dimensional arrays, initializing the two dimensional arrays and accessing elements in such arrays.

6M CO2
b) Write a program to find an element present in a given array using Search techniques.

