	Hall Ticket Number :			
L		R	-20	
	Code: 20A312T-C I B.Tech. I Semester Regular & Supplementary Examinations Ap Engineering Drawing	oril/Mc	ay 2022)
	(Common to CE & ECE)			
	Max. Marks: 70 ********	lime	: 3 Hou	rs
	Answer any five questions by choosing one question from each unit (5 x 14	= 70 Ma	arks)	Diserse
		Marks	CO	Blooms Level
1.	UNIT–I The foci of an ellipse are 90 apart, the minor axis is 65 mm long. Determine the length of major axis and draw the ellipse by oblong method.	14M	CO1	L1,L2
	OR			
2.	Draw an epi-cycloid of rolling circle 40 mm diameter which rolls outside another circle of 120 mm diameter for one complete revolution. Draw a tangent and normal to the curve at a point on it after the rolling circle has made one full revolution.	14M	CO1	L1,L2
	UNIT–II			
3	Two points A and B are in the H.P. The point A is 30mm infront of the V.P, while B is behind the V.P. The distance between their projectors is 75 mm and the line joining their top views makes an angle of 45 ⁰ with xy. Find the distance of the point B, from the V.P.	14M	CO2	L1,L2
	OR			
4.	A line AB 75 mm long is inclined at 45° to the H.P and 30° to the V.P. Its end 'A' is 20 mm above the H.P and 40 mm infront of the V.P. Draw its projections.	14M	CO2	L1,L2
5.	Draw the projections of a regular hexagon of 25mm side, having one of its sides in the H.P. and inclined at 60° to the V.P., and its surface making an angle of 45° with the H.P.	14M	CO3	L1,L2
	OR			
6.	ABC is a triangular lamina having the edges AB, BC and CA equal to 60,80 and 50 respectively. The edge AC rests on the HP and makes an angle of 45° with VP. The plane is inclined at 30° to HP. Draw its projections.	14M	CO3	L1,L2

6 14M CO5 L1,L2

*** End ***

Hall Ticket Number :											
									R-2	20	
Code: 20A511T I B.Tech. I Semester Re	- - - - - - - - - - - - - - - - - - -	Suppl	eme	ntan	/ Exc	imr	natio	א אמר		12022)
	em Solvi										-
	(Cor	nmon	to All	Bran	che	s)		•		<u></u>	
Max. Marks: 70		***	****	*					Time:	3 Hou	rs
Note: 1. Question Paper cons 2. In Part-A, each quest	tion carries	Two m	ark.		art-]	B)					
3. Answer ALL the que	estions in I	Part-A a	nd Pa	rt-B							
	(0	<u>PA</u> Compuls	A <u>RT-A</u> ory q	_	n)						
1. Answer ALL the fol	lowing sh	ort ans	wer q	luesti	ons	((5 X	2 = 10) (M	СО	Blooms Level
 a) What is the difference Show both notat 			•						/ chart?	1	L2
b) What is the diffe	rence be	etween	whil	e an	d do	o-wł	nile?			2	L2
c) Write the syntax	of strler	n() and	d strc	at()	fun	ctior	าร.			3	L1
d) What is pointer a	and decla	are po	inter	array	/?					4	L1
e) What is the diffe	rence be	etween	stru	cture	an	d ur	nioní	?		5	L1
		PA	ART-E	3							
Answer <i>five</i> questions	by choosir	ng one q	uestio	on froi	m ea	ch u	nit (5 x 12	= 60 Mar	ks)	
									Marks	со	Blooms
		UNIT–									Level
a) What are the vari				ear	orob	lem	ו? E	xpla	in		
them by taking an		-		•				•	6M	1	L2
b) Draw a flow chart	to find th	ne larg	est c	of thr	ee i	านท	ber	s in (C. 6M	1,5	L2
		OR									
a) What are the varie			perat	tors	in C). E	xpla	in ar	•		
four types with exa	-		- 4	:	\mathbf{c}	-	la:	مەر مالە	6M		
b) How can we classif	-	unt data JNIT-I		es in	C.	⊨хр	lain	tnem	n. 6M	1	L2
a) Explain selection s	sort algo	rithm	with	an e	xam	ple	•		6M	2,5	L2
b) What is an Array?		o decla	are a	nd ir	nitia	lize	an	Arra	-	- -	
Explain with an ex	ampie.								6M	2,5	L3
a) Evolain Rinary Say	arch Ala	OR orithm	with	an é	יסעב	mnl	0		614	<u>م د</u>	10
a) Explain Binary Sea	aron Aig	Unum	VVILI		<u>-</u> ra	ΠΡΙ	с.		6M	2,5	L2

	LX		ode: 20	A511T	
	D)	You are given the height H (in metres) and mass M (in kilograms) of your friend. The Body Mass Index (BMI) of a person is computed as M/H ² .			
		Report the category into which your friend falls, based on his BMI:			
		Category 1: Underweight if BMI 18 Category 2: Normal weight if BMI ∈{19, 20,, 24}			
		Category 3: Overweight if BMI ∈{25, 26,, 29} Category 4: Obesity if BMI 30	6M	2,5	L3
		UNIT-III			
6.	a)	What are the advantages of using Functions? How do we declare Functions in C.	6M	3	L2
	b)	Write a program to find the factorial of a given number using recursion.	6M	3,5	L3
		OR			
7.	a)	Explain various storage classes in C with an example.	6M	4	L2
	b)	What is the role of Preprocessor in the Compilation process and explain two preprocessor directives.	6M	4	L2
8.	a)	Define void pointer. Where we use this concept? Give an example for it.	6M	4	L2
	b)	Write a program to exchange two values using pointers. OR	6M	4	L3
9.	a)	Distinguish between array of pointers and pointer to array with examples.	6M	4	L2
	b)	List the functions used in the dynamic memory allocation. Explain each function with an example.	6M	4	L2
		UNIT–V			
10.	a)	Describe about various file opening modes in C.	6M	4	L2
	b)	Write a program to compare two files, printing the first line where they differ.	6M	4,5	L3
		OR			
11.	Ĩ	What are the different ways to access the members of structure elements in C. Give example for each case?	6M	4	L2
	b)	Write a C program to perform average of three number using files. Assume input numbers are existing in a file with name input.txt and result need to be saved in another			
		file with the name output.txt *** End ***	6M	4,5	L3

Hall Ticket Number :			
Code: 20AC11T	R- 2	20	
I B.Tech. I Semester Regular & Supplementary Examinations Ap	oril/May	/ 202	2
Algebra and Calculus			
(Common to All Branches) Max. Marks: 70	Time:	3 Hoi	irs
******	11110.	01100	515
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark.			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions (5X2= 10M)	С	() -	looms Level
$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$			Levei
a) Find the rank of $A = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 4 & -8 \end{vmatrix}$			
a) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$			
$\begin{bmatrix} 0 & 4 & -8 \end{bmatrix}$	C	D1	L3
b) Define index and signature of a quadratic form.	C	D 2	L2
c) Define total derivative in partial differentiation	C	D 3	L2
d) Evaluate $\int_{x=0}^{1} \int_{y=0}^{2} \int_{z=0}^{2} x^2 yz dx dy dz$			
	C	D4	L3
e) Define beta function and explain two properties	C	D5	L2
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 1	2 = 60 M	larks ')
	Marks	CO	Blooms
UNIT-I			Level
2. a) Find the value of '}' such that the system			
2x + y + 2z = 0, x + y + 3z = 0, 4x + 3y + z = 0			
has non trivial solutions	6M	CO1	L3
 b) Find the Eigen values and Eigen vectors of the matrix 			
$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$			
$A = \begin{bmatrix} 1 & 5 & 1 \end{bmatrix}$			
	6M	CO1	L2
OR			
$\begin{bmatrix} 1 & 3 & 4 & 3 \end{bmatrix}$			
3. a) Reduce the matrix $\begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{bmatrix}$ to normal form and find			
its rank.	6M	CO1	L3

b) Find the Eigen values and the corresponding Eigen vectors

of
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

(UNIT-II)
4. Verify Cayley – Hamilton theorem for
 $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find A^{-1} and A^{6}
 $12M \quad Coz$ L3
(DR)
5. Reduce the quadratic form
 $Q = 6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_3x_1$
into canonical form and find its nature.
(UNIT-III)
6. a) Expand the Taylor's series expansion of *Sinx* in powers of
 $(x - \frac{f}{4})$
(M) Co3 L3
(DR)
6. a) Expand the Taylor's series expansion of *Sinx* in powers of
 $(x - \frac{f}{4})$
(M) Co3 L3
(DR)
6. a) Expand the Taylor's particle expansion of *Sinx* in powers of
 $(x - \frac{f}{4})$
(M) Co3 L3
(DR)
7. a) If $U = f(2x - 3y, 3y - 4z, 4z - 2x)$ then find the
value of $\frac{1}{2} \frac{\partial U}{\partial x} + \frac{1}{3} \frac{\partial U}{\partial y} + \frac{1}{3} \frac{\partial U}{\partial z}$
(DR)
7. a) If $x = r Sin_u CosW$, $y = r Sin_u SinW$, $z = r Cos_u$
(DR)
7. a) A rectangular open box of capacity 32 cubic units is to be
prepared. Find the dimensions of the box, to minimize the
cost of painting outside.
(UNIT-IV)
8. a) Evaluate $\int \int (x^2 + y^2) dx dy$ in the positive quadrant for
which $x + y \le 1$
(M) CO4 L3

Code: 20AC11T

b) Evaluate
$$\int_{y=1}^{e} \int_{x=1}^{\log y} \int_{z=1}^{e^{x}} \log z \, dz \, dx \, dy$$
OR
9. Evaluate
$$\int_{0}^{4a} \int_{x^{2}}^{2\sqrt{ax}} dy \, dx$$
by changing the order of the
integration
12M CO4
L2
10. a) Derive the relation between Beta and Gamma functions
6M CO5
L3
b) Evaluate
$$\int_{0}^{\infty} \sqrt{x}e^{-x^{2}} dx$$
6M CO5
L4
11. a)
Prove that
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$$
6M CO5
L3
b)
Evaluate
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$
6M CO5
L4
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$
6M CO5
L3
b)
Evaluate
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$
6M CO5
L4
$$\int_{0}^{\frac{f}{2}} \sqrt{\cot_{x}} d_{x}$$

Hall Ticket Number :			
Code: 20AC12T	R-	20	
I B.Tech. I Semester Regular & Supplementary Examinations A	.pril/Ma	y 202	22
Applied Physics			
(Common to EEE, ECE and AI&ML) Max. Marks: 70	Time:	3 Ho	Urs
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question) 			
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$) С	ю ^Е	Blooms Level
a) Define double refraction in polarization. Give example.	C	D1	Lover L1
b) List the types of polarization in dielectrics	C	D 2	L1
c) State Poynting theorem of electromagnetic theory.	C	D 3	L1
d) Mention the applications of Hall Effect in semiconductors.	C	D 4	L1
e) Why magnetic flux expels from a superconductor in superconducting state?	the Co) 5	L3
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x	12 = 60 🛚	Marks)
	Marks	CO	Blooms Level
UNIT–I			
2. a) Explain Newton's rings in interference of light.	4M	CO1	L2
b) Deduce an equation for wavelength of light from			
Newton's rings.	8M	CO1	L3
OR			
3. a) Discuss Fraunhofer diffraction due to single slit experiment.		CO1	L2
b) Obtain maxima and minima conditions for single sli			
experiment.	6M	CO1	L3
4. a) Explain frequency dependance of polarization ir	1		
dielectrics.	6M	CO2	L2
b) Write a short note on ferroelectricity?	6M	CO2	L1
OR			
5. a) Define magnetic susceptibility and permeability.	4M	CO2	L1
5. a) Define magnetic susceptibility and permeability.b) Classify magnetic materials based on their properties.	4M 8M		L1 L4

Code:	20AC12T
-------	---------

			Code: 2	20AC12T	
		UNIT–III			
6.	a)	Discuss Stroke's theorem and prove it.	8M	CO3	L2
	b)	Write electromagnetic wave propagation Maxwell equations.	4M	CO3	L2
		OR			
7.	a)	Define acceptance angle and numerical aperture of a			
		fibre.	4M	CO3	L1
	b)	Explain propagation of light through an optical fibre.	8M	CO3	L2
		UNIT–IV			
8.	a)	Classify solids based on energy bands.	6M	CO4	L4
	b)	Calculate density of majority charge carriers of p-type			
		semiconductor.	6M	CO4	L3
		OR			
9.	a)	Define Hall Effect in semiconductors.	4M	CO4	L1
	b)	Derive an equation for Hall Coefficient.	8M	CO4	L3
		UNIT–V			
10.	a)	Discuss the properties of superconductors.	6M	CO5	L2
	b)	Explain Meissner's effect of superconductors.	6M	CO5	L2
		OR			
11.	a)	What is the basic significance of nanomaterials?	4M	CO5	L1
	b)	Explain the properties of nanomaterials.	8M	CO5	L2
	,	*** End ***			

Hall Ticket Number :		
Code: 20A411T	R-2	0
I B.Tech. I Semester Regular & Supplementary Examinations Ap Basic Electrical and Electronics Engineering (Electronics and Communication Engineering)	ril/May	2022
Max. Marks: 70	Time: 3	B Hours
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B <u>PART-A</u> (Compulsory question)		
1. Answer ALL the following short answer questions $(5 \times 2 = 10 \text{ M})$	CO	Blooms Level
a) What is capacitance?	1	L1
b) State Maximum power transfer theorem?	2	L1
c) What are the characteristics of Zener diode?	3	L1
d) What is π Filter?	4	L1
e) Draw the symbol of n-p-n transistor?	5	L1
PART-B Answer <i>five</i> questions by choosing one question from each unit (5 x 12 =	60 Mark	s)
	Marks	CO Blooms Level
UNIT–I		Lover
2. a) Write short notes on current sources?	6M	1 L1,L2
b) Explain any two types of potentiometer with neat diagram?	6M	1 L1,L2
OR		
3. a) Draw the block diagram of CRO?	6M	1 L1,L2
b) What is DSO? and explain?	6M	1 L1,L2
UNIT–II		
4. a) State and explain the Ohm's Law?	6M	2 L1,L2
b) Write short notes on source transformation?	6M	2 L1,L2
OR		
5. State and explain the super position theorem with suitable example?	12M	2 L1,L2
6. a) Derive the expression for transition capacitance in a PN		
junction diode?	6M	3 L1,L3
b) Discuss the energy band Diagram of Semi conductors?	6M	3 L2

	•		14111	L
	OR			
7. a)	Explain the static and dynamic Resistance of Diodes?	6M	3	L2
b)	Write short notes on 'Temperature Dependency' of semi conductor diodes?	6M	3	L1,L2
	UNIT–IV			
8.	Draw and explain the operation of Half wave Rectifiers?	12M	4	L2
	OR			
9.	Explain the following			
	i) RC filter ii) Capacitor filter	12M	4	L2
	UNIT–V			
10.	Discuss the Construction and operation of N-P-N			
	transistor with neat sketches?	12M	5	L2
	OR			
11.	Explain the operation of CC configurations and their			
	characteristics?	12M	5	L1,L2
	*** End ***			

Code: 20A411T