Code: 20A312T-C
\square
-
| B.Tech. I Semester Regular \& Supplementary Examinations April/May 2022

Engineering Drawing

(Common to CE \& ECE)
Max. Marks: 70
Answer any five questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. The foci of an ellipse are 90 apart, the minor axis is 65 mm long. Determine the length of major axis and draw the ellipse by oblong method.

14M CO1 L1,L2

OR

2. Draw an epi-cycloid of rolling circle 40 mm diameter which rolls outside another circle of 120 mm diameter for one complete revolution. Draw a tangent and normal to the curve at a point on it after the rolling circle has made one full revolution.

UNIT-II

3 Two points A and B are in the H.P. The point A is 30 mm infront of the V.P, while B is behind the V.P. The distance between their projectors is 75 mm and the line joining their top views makes an angle of 45° with xy . Find the distance of the point B, from the V.P.

OR

4. A line $A B 75 \mathrm{~mm}$ long is inclined at 45° to the H.P and 30° to the V.P. Its end ' A ' is 20 mm above the H.P and 40 mm infront of the V.P. Draw its projections.

UNIT-III

5. Draw the projections of a regular hexagon of 25 mm side, having one of its sides in the H.P. and inclined at 60° to the V.P., and its surface making an angle of 45° with the H.P.

14M CO3 L1,L2

OR

6. $A B C$ is a triangular lamina having the edges $A B, B C$ and CA equal to 60,80 and 50 respectively. The edge AC rests on the HP and makes an angle of 45° with VP. The plane is inclined at 30° to HP. Draw its projections.

UNIT-IV

7. A Pentagonal pyramid of base side 30 mm and axis is 70 mm long is lying on the H.P by one of the corner of its base such that its axis is 30° inclined to H.P and 45° inclined to V.P. Draw the projections of the pyramid.

14M CO4 L1,L2

OR

8. Draw the projections of a pentagonal prism base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the ground, with the axis inclined at 45° to the VP.

14M CO4 L1,L2
UNIT-V
9. A pentagonal pyramid of side of base 30 mm and height 70 mm is resting with its base on H.P. Draw the isometric drawing of the pyramid.

14M CO5 L1,L2

OR

10. Draw the FV, TV and LSV of the following Figure

Code: 20A511T

I B.Tech. I Semester Regular \& Supplementary Examinations April/May 2022

Problem Solving through C Programming

(Common to All Branches)

PART-A
 (Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$) CO
a) What is the difference between a pseudo code and flow chart? 1 L2 Show both notations for adding two natural numbers.
b) What is the difference between while and do-while? 2 L2
c) Write the syntax of strlen() and strcat() functions. 3 L1
d) What is pointer and declare pointer array? 4 L1
e) What is the difference between structure and union? 5 L1

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) What are the various steps to solve a problem? Explain them by taking an example.
b) Draw a flow chart to find the largest of three numbers in C .
6M 1,5 L2

OR

3. a) What are the various kinds of operators in C. Explain any four types with examples?
b) How can we classify different data types in C. Explain them. $6 \mathrm{CM} \quad 1 \quad$ L2

UNIT-II

4. a) Explain selection sort algorithm with an example. 6M 2,5 L2
b) What is an Array? How to declare and initialize an Array. Explain with an example.
$6 \mathrm{M} \quad 2,5 \quad$ L3
OR
5. a) Explain Binary Search Algorithm with an example.
$6 M \quad 2,5 \quad$ L2
b) You are given the height H (in metres) and mass M (in kilograms) of your friend. The Body Mass Index (BMI) of a person is computed as $\mathrm{M} / \mathrm{H}^{2}$.
Report the category into which your friend falls, based on his BMI:
Category 1: Underweight if $\mathrm{BMI} \leq 18$
Category 2: Normal weight if $\mathrm{BMI} \in\{19,20, \ldots, 24\}$
Category 3: Overweight if BMI $\in\{25,26, \ldots, 29\}$
Category 4: Obesity if BMI ≥ 30
$6 \mathrm{M} \quad 2,5 \quad$ L3

UNIT-III

6. a) What are the advantages of using Functions? How do we declare Functions in C.
b) Write a program to find the factorial of a given number using recursion.

OR

| 7. a) Explain various storage classes in C with an example. | 6 M | 4 | L2 |
| :--- | :--- | :--- | :--- | :--- |
| b) What is the role of Preprocessor in the Compilation | | | L2 |
| process and explain two preprocessor directives. | 6 M | 4 | L2 |
| UNIT-IV | | | |

8. a) Define void pointer. Where we use this concept? Give an example for it.
b) Write a program to exchange two values using pointers.

6 M	4	L 2
6 M	4	L 3

OR

9. a) Distinguish between array of pointers and pointer to array with examples.
b) List the functions used in the dynamic memory allocation. Explain each function with an example.

UNIT-V

10. a) Describe about various file opening modes in C.
b) Write a program to compare two files, printing the first line where they differ.

OR

11. a) What are the different ways to access the members of structure elements in C. Give example for each case?

6M $4 \quad$ L2
b) Write a C program to perform average of three number using files. Assume input numbers are existing in a file with name input.txt and result need to be saved in another file with the name output.txt
\square

Code: 20AC11T

I B.Tech. I Semester Regular \& Supplementary Examinations April/May 2022

Algebra and Calculus
 (Common to All Branches)

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M}$)
a) Find the rank of $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 4 & -8\end{array}\right]$ CO1 L3
b) Define index and signature of a quadratic form.

CO2
c) Define total derivative in partial differentiation
d) Evaluate $\int_{x=0}^{1} \int_{y=0}^{2} \int_{z=0}^{2} x^{2} y z d x d y d z$
e) Define beta function and explain two properties

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Find the value of ' λ ' such that the system

$$
2 x+y+2 z=0, x+y+3 z=0,4 x+3 y+\lambda z=0
$$

has non trivial solutions
6M CO1
b) Find the Eigen values and Eigen vectors of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

OR

3. a) Reduce the matrix $\left[\begin{array}{cccc}1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1\end{array}\right]$ to normal form and find its rank.
b) Find the Eigen values and the corresponding Eigen vectors

$$
\text { of } A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 2 & 6 \\
0 & 0 & 5
\end{array}\right]
$$

UNIT-II

4. Verify Cayley - Hamilton theorem for

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right] \text { and hence find } A^{-1} \text { and } A^{6}
$$

12M CO2

OR

5. Reduce the quadratic form

$$
Q=6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{1}
$$

into canonical form and find its nature.
12M CO2

UNIT-III

6. a) Expand the Taylor's series expansion of $\operatorname{Sin} x$ in powers of $\left(x-\frac{\pi}{4}\right)$
b) If $U=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$ then find the value of $\frac{1}{2} \frac{\partial U}{\partial x}+\frac{1}{3} \frac{\partial U}{\partial y}+\frac{1}{3} \frac{\partial U}{\partial z}$

6M CO3

OR

7. a) If $x=r \operatorname{Sin} \theta \operatorname{Cos} \phi, \mathrm{y}=r \operatorname{Sin} \theta \operatorname{Sin} \phi, z=r \operatorname{Cos} \theta$
then find $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$
6M CO3
b) A rectangular open box of capacity 32 cubic units is to be prepared. Find the dimensions of the box, to minimize the cost of painting outside.

6M CO3

UNIT-IV

8. a) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ in the positive quadrant for which $x+y \leq 1$

6M CO4
b) Evaluate $\int_{y=1}^{e} \int_{x=1}^{\log y} \int_{z=1}^{e^{x}} \log z d z d x d y$

OR
9. Evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$ by changing the order of the integration

12M CO4

UNIT-V

10. a) Derive the relation between Beta and Gamma functions
b) Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-x^{2}} d x$

OR

11. a) Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

6M CO5 L3
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} d \theta$ 6M CO5

Hall Ticket Number :										

R-20

Code: 20AC12T

| B.Tech. I Semester Regular \& Supplementary Examinations April/May 2022

Applied Physics

(Common to EEE, ECE and AI\&ML)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad \mathrm{CO}$ Blooms
a) Define double refraction in polarization. Give example. CO 1
b) List the types of polarization in dielectrics CO 2
c) State Poynting theorem of electromagnetic theory.

CO3
d) Mention the applications of Hall Effect in semiconductors.

CO4
e) Why magnetic flux expels from a superconductor in the co5 L3 superconducting state?

PART-B

Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)
Marks CO

UNIT-I

$\begin{array}{lllll}\text { 2. a) Explain Newton's rings in interference of light. } & 4 \mathrm{M} & \mathrm{CO} 1 & \mathrm{~L} 2 \\ \text { b) Deduce an equation for wavelength of light from } & & & \\ \text { Newton's rings. } & & 8 \mathrm{M} & \mathrm{CO} 1 & \mathrm{~L} 3\end{array}$

OR

3. a) Discuss Fraunhofer diffraction due to single slit experiment. 6M CO1 L2
b) Obtain maxima and minima conditions for single slit
experiment.
$6 M$ CO1 L3

UNIT-II

4. a) Explain frequency dependance of polarization in
dielectrics.
b) Write a short note on ferroelectricity?

6M CO2 L1

OR

5. a) Define magnetic susceptibility and permeability.

4M CO2 L1
b) Classify magnetic materials based on their properties.
8M CO2 L4

UNIT-III

6. a) Discuss Stroke's theorem and prove it. 8M CO3 L2
b) Write electromagnetic wave propagation Maxwell equations. 4 M CO L2
OR
7. a) Define acceptance angle and numerical aperture of afibre.4M CO3L1
b) Explain propagation of light through an optical fibre. 8M CO3 L2
UNIT-IV
8. a) Classify solids based on energy bands.6M CO4 L4
b) Calculate density of majority charge carriers of p-type semiconductor. $6 \mathrm{M} \mathrm{co4}$ L3
OR
9. a) Define Hall Effect in semiconductors. 4M CO4 L1
b) Derive an equation for Hall Coefficient. 8M CO4 L3
UNIT-V
10. a) Discuss the properties of superconductors.6M CO5L2
b) Explain Meissner's effect of superconductors. $6 \mathrm{M} \mathrm{CO5}$ L2
OR
11. a) What is the basic significance of nanomaterials? 4M CO5 L1
b) Explain the properties of nanomaterials.
8M CO5 L2

Code: 20A411T

I B.Tech. I Semester Regular \& Supplementary Examinations April/May 2022

Basic Electrical and Electronics Engineering

(Electronics and Communication Engineering)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions ($5 \times 2=10 \mathrm{M})$
a) What is capacitance?
b) State Maximum power transfer theorem?
c) What are the characteristics of Zener diode?
d) What is $п$ Filter?
e) Draw the symbol of $n-p-n$ transistor?

PART-B
Answer five questions by choosing one question from each unit ($5 \times 12=60$ Marks)

UNIT-I

2. a) Write short notes on current sources?

6M
1
b) Explain any two types of potentiometer with neat diagram?

6 M
1

OR

3. a) Draw the block diagram of CRO ?
b) What is DSO? and explain?

UNIT-II

6M
L1,L2
6M
L1,L2
4. a) State and explain the Ohm's Law?

6M
2
L1,L2
b) Write short notes on source transformation?

6M
2

OR

5. State and explain the super position theorem with suitable example?
```
12M 2

\section*{UNIT-III}
6. a) Derive the expression for transition capacitance in a PN junction diode?

6M 3 L1,L3
b) Discuss the energy band Diagram of Semi conductors? 6M 3 L2

\section*{OR}
\begin{tabular}{|c|c|c|c|c|}
\hline 7. a) & Explain the static and dynamic Resistance of Diodes? & 6M & 3 & L2 \\
\hline \multirow[t]{2}{*}{b)} & Write short notes on 'Temperature Dependency' of semi conductor diodes? & 6M & 3 & L1,L2 \\
\hline & UNIT-IV & & & \\
\hline 8. & Draw and explain the operation of Half wave Rectifiers? & 12M & 4 & L2 \\
\hline \multicolumn{5}{|c|}{OR} \\
\hline 9. & \multicolumn{4}{|l|}{Explain the following} \\
\hline & i) RC filter ii) Capacitor filter & 12M & 4 & L2 \\
\hline & UNIT-V & & & \\
\hline 10. & Discuss the Construction and operation of N-P-N transistor with neat sketches? & 12M & 5 & L2 \\
\hline \multicolumn{5}{|c|}{OR} \\
\hline \multirow[t]{2}{*}{11.} & Explain the operation of CC configurations and their characteristics? & 12M & 5 & L1,L2 \\
\hline & \multicolumn{4}{|l|}{*** End \({ }^{* * *}\)} \\
\hline
\end{tabular}```

