Code: 20AC11T
$\square$

## | B.Tech. I Semester Regular Examinations July 2021

## Algebra and Calculus

## ( Common to All )

Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

## PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Find the eigen values of $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$

1 1,2
b) Find the symmetric matrix corresponding to the quadratic form $x^{2}+6 x y+5 y^{2}$

2 1,2
c) If $x=r \cos \theta, y=r \sin \Theta$ then find $\frac{\partial(x, y)}{\partial(r, \theta)}$
31.2
d) Find $\int_{0}^{1} \int_{0}^{x} x y d y d x$

4 1,2
e) Define Gamma function

## PART-B

Answer any five full questions by choosing one question from each unit ( $5 \times 12=60$ Marks )

## UNIT-I

2. a) Reduce the matrix $\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$ to normal form and hence find the rank. $6 \mathrm{M} \quad 1 \quad 1,2$
b) Show that the equations $x+y+z=6, x+2 y+3 z=14, \quad x+4 y+7 z=30$ are consistent and solve them.

## OR

3. Find the eigen values and the corresponding eigen vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

12M 1 1,2

## UNIT-II

4. Verify Cayley-Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ and $12 \mathrm{M} \quad 2 \quad 1,2$ hence find $\mathrm{A}^{-1}$ and $\mathrm{A}^{4}$
5. Reduce the quadratic form $3 x^{2}+2 y^{2}+3 z^{2}-2 x y-2 y z$ to the normal form by orthogonal transformation

## UNIT-III

6. a) If
$x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$ then showthat $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta \quad 6 \mathrm{M} \quad 3 \quad 1,2$
b) Find the maximum and minimum values of $x y+\frac{a^{3}}{x}+\frac{a^{3}}{y}$
$6 \mathrm{M} 31,2$

## OR

7. Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

## UNIT-IV

8. a) Evaluate

$$
\int_{a}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}} x y d y d x
$$

b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$
6M 4 1,2

## OR

9. Change the order of integration and evaluate

$$
\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} d y d x
$$

## UNIT-V

10. a) Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
b) Show that $\int_{0}^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n} n \text { ! }}{(m+1)^{n+1}}$ where ' $n$ ' is a positive integer and $6 \mathrm{M} 51,2$ $m>-1$

## OR

11. a) Evaluate $\int_{0}^{1} x^{\frac{3}{2}}\left(1-x^{2}\right)^{\frac{5}{2}} d x$
$6 \mathrm{M} 51,2$
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{10} \theta d \theta$
$6 \mathrm{M} 51,2$

Code: 20AC12T
I B.Tech. I Semester Regular Examinations July 2021

## Applied Physics

( Common to EEE \& ECE )
Max. Marks: 70

Time: 3 Hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

PART-A
(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ Co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Mention any four applications of interference in Engineering field. CO1
b) What is Bohr's magneton and give its expression. CO 2
c) State the Gauss theorem for divergence? CO 3
d) Define drift and diffusion currents CO 4
e) Write the applications of nanomaterials. CO5

## PART-B

Answer any five full questions by choosing one question from each unit ( $5 \times 12=60$ Marks )

|  |  | Marks | CO | Blooms Level |
| :---: | :---: | :---: | :---: | :---: |
|  | UNIT-I |  |  |  |
| 2. a) | Explain interference in thin films by reflection of light. | 8M | CO1 |  |
| b) | In Newton's rings experiment, if the radius of the $8^{\text {th }}$ and $12^{\text {th }}$ rings are 0.25 mm and 0.3 mm respectively, find the wavelength of the light used if the radius of curvature of plano-convex lens is 100 cm . | 4M | CO1 |  |
|  | OR |  |  |  |
| 3. a) | Explain diffraction grating experiment to determine the wave length of a monochromatic source. | 8M | CO1 |  |
| b) | Calculate the thickness of a quarter wave plate for a monochromatic light of wave length 600 nm , if the refractive indices of ordinary and extraordinary rays in the medium are 1.5442 and 1.5533 respectively | 4M | CO1 |  |
|  | UNIT-II |  |  |  |
| 4. a) | Define lonic polarization and derive an expression for lonic polarizability | 6M | CO 2 |  |
| b) | Explain Ferro magnetism through hysteresis with neat figures | 6M | CO2 |  |
|  | OR |  |  |  |
| 5. a) | Give the classification of magnetic materials into dia, para and ferro magnetic materials on the basis of magnetic moment | 6M | CO2 |  |
| b) | Explain in detail about the different types of polarization mechanisms in dielectrics. | 6M | CO2 |  |

UNIT-III
6. a) State and explain Poynting theorem ..... 6M ..... CO3
b) Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 \& 1.498 respectively. ..... $6 \mathrm{M} \mathrm{CO3}$
OR
7. a) Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation. ..... $6 \mathrm{M} \mathrm{Co3}$
b) Discuss the application of optical fibers in Medical field and in industry as a sensor. ..... 6 M CO
UNIT-IV8. a) Derive an expression for density of holes in an intrinsic semiconductor6 M CO 4
b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids ..... $6 \mathrm{M} \mathrm{CO4}$
OR
9. a) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. ..... 7M CO4
b) Differentiate direct and indirect band gap semiconductors with examples ..... 5M CO4
UNIT-V
10. a) Explain Meissner effect. Write notes on magnetic levitation ..... 6M CO5
b) Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials. ..... $6 \mathrm{M} \mathrm{Co5}$
OR
11. a) Describe BCS theory of superconductivity ..... 6M CO5
b) Discuss any one method to characterization of the nanomaterials ..... $6 \mathrm{M} \mathrm{Co5}$

## Code: 20A411T

## | B.Tech. I Semester Regular Examinations July 2021

## Basic Electrical and Electronics Engineering

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

## PART-A

(Compulsory question)

1. Answer ALL the following short answer questions
a) What are Active and Passive elements?
$(5 \times 2=10 M)$
b) State Kirchhoff's Current law.
c) Write one difference between an Intrinsic and Extrinsic semiconductor.
d) What is Transformer Utilization factor (TUF)?
e) Large signal current gain ' $\beta$ ' for common emitter configuration, is $\qquad$
PART-B
Answer any five full questions by choosing one question from each unit ( $5 \times 12=60$ Marks )

Marks CO | Blooms |
| :---: |
| Level |

## UNIT-I

2. a) Discuss briefly about Voltage and Current Sources.
b) Write about resistance color coding in detail.

OR
3. What is a DSO? Elaborate in detail about the construction and working of a DSO.
4. a) Explain briefly about Norton's Theorem.
b) Find $R_{A B}$ in the circuit shown in Figure.

5. a) State Kirchhoff's Laws. Find the current flowing through the 6 Ohm resistor.

b) Write briefly about Superposition Theorem.

8M
CO2
L2, L3
$4 \mathrm{M} \quad \mathrm{CO} 2$
L1, L2

## UNIT-III

6. a) Justify how a Zener diode acts as a Voltage Regulator.
b) Discuss the Volt-Ampere characteristics of a P-N Diode under Forward-bias condition.

## OR

7. a) Derive the diode current equation for a P-N diode with the help of necessary diagrams.
b) The reverse saturation current applied to a silicon PN diode is $10 \mu \mathrm{~A}$. Calculate the diode current for the forward-bias voltage of 0.6 V at $25^{\circ} \mathrm{C}$ temperature. Take $\eta=2$.

## UNIT-IV

8. a) The following parameters are associated with for Half wave rectifiers. Define them.
i. Ripple factor.
ii. Efficiency
iii. Peak Inverse Voltage
b) Briefly differentiate between a Half wave rectifier and Full wave rectifier.

6M
CO4
L1, L2
6M CO4
L1, L2

## OR

9. A $230 \mathrm{~V}, 60 \mathrm{~Hz}$ voltage is applied to the primary of a $5: 1$ step-down center-tap transformer used in a full wave rectifier having a load of 900 ohms. If the diode resistance and secondary coil resistance together has a resistance of 100ohms. Determine
a) DC voltage across the load
b) DC current flowing through the load
c) DC power delivered to the load
d) PIV
e) Ripple voltage and its frequency
f) Efficiency

## UNIT-V

10. Describe in detail about the operation, Input and output characteristics of a transistor in Common Emitter Configuration.

12M CO5 L1, L2

## OR

11. a. Draw the symbols for a NPN and PNP transistors.
b. Explain the construction and operation of n-p-n transistor with neat sketches

4M
8M

## Code: 20A312T-C

## | B.Tech. I Semester Regular Examinations July 2021 <br> Engineering Drawing

( Electronics and Communication Engineering )
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
*********
Marks CO $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$

## UNIT-I

1. Construct an ellipse, when the distance of the focus from the directrix is equal to 65 mm and eccentricity is $2 / 3$. Also draw tangent and normal to the curve at a point 40 mm from the directrix.

## OR

2. Draw a cycloid given the diameter of a rolling circle as $d=50 \mathrm{~mm}$. Draw a normal and tangent at any point on the curve

## UNIT-II

3. A point $A$ is 25 mm above the H.P \& 35mm in front of the V.P. Another point $B$ is 40 mm behind the V.P. \& 30 mm below the H.P. Draw the projections by taking the distance between the projectors as 50 mm .

14M CO2

## OR

4. Line $A B$ is 75 mm long and it is $30^{\circ} \& 40^{\circ}$ Inclined to HP \& VP respectively. End $A$ is 12 mm above HP and 10 mm in front of VP. Draw its projections and locate HT \& VT

## UNIT-III

5. a) A circular plate of negligible thickness and 60 mm diameter appears as an ellipse in the top view, having its major axis 60 mm and minor axis 30 mm . Draw its projections and find the inclination of the plate with HP.
b) A pentagonal plate of side 35 mm is placed with its surface vertical and parallel to VP. Draw its projections when one of the sides is perpendicular to HP.

OR
6. A regular hexagon of side 35 mm has a corner in the HP. Its surface is inclined at $45^{\circ}$ to HP. The top view of the diagonal through the corner in HP makes an angle of $60^{\circ}$ with VP. Draw its projections.

## UNIT-IV

7. Draw the projections of a hexagonal prism of base 25 mm side and axis 60 mm long, when it is resting on one of its side of the base on HP. The axis of the solid is inclined at $45^{\circ}$ to the HP

14M CO4

## OR

8. A cylinder 40 mm diameter and 50 mm axis is resting on one point of a base circle on VP while it's axis makes $45^{\circ}$ with VP and FV of the axis $35^{\circ}$ with HP. Draw projections

## UNIT-V

9. Draw the isometric view of a cone, base 40 mm diameter and axis 55 mm long.
(a) when its axis is vertical and
(b) when its axis is horizontal
14M
CO5

## OR

10. Draw the front view, top view, right and left side views of the object shown in figure (All dimensions in mm ).


# R-20 

I B.Tech. I Semester Regular Examinations July 2021
Engineering Drawing
(Electronics and Communication Engineering )

## Max. Marks: 70

Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
*********
Marks CO $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$

## UNIT-I

1. Construct a Hyperbola when the distance between the focus and the directrix is 40 mm and the eccentricity is $4 / 3$. Draw a tangent and normal at any point on the hyperbola

## OR

2. Draw a hypo cycloid of a circle of 40 mm diameter which rolls inside another circle of 160 mm diameter, for one revolution counter clock wise. Draw a tangent and a normal to it at a point 60 mm from the center of the directing circle

UNIT-II
3. A point $A$ is 25 mm above the H.P \& 35 mm in front of the V.P. Another point $B$ is 40 mm behind the V.P. \& 30 mm below the H.P. Draw the projections by taking the distance between the projectors as 50 mm .

## OR

4. $\quad F V$ of line $A B$ is $50^{\circ}$ inclined to $x y$ and measures 55 mm long while it's TV is $60^{\circ}$ inclined to $x y$ line. If end $A$ is 10 mm above HP and 15 mm in front of VP, draw it's projections, find true length, inclinations of line with HP \& VP.

## UNIT-III

5. Draw the projections of a regular hexagon of side 25 mm , having one of its sides on the ground and inclined at $60^{\circ}$ to VP and its surface making an angle of $45^{\circ}$ with the ground.

14M
CO 3

## OR

6. A regular pentagon of side 40 mm has one side on VP and inclined at $60^{\circ}$ to HP . The surface makes an angle of $30^{\circ}$ with VP. Draw its projections.

UNIT-IV
7. Draw the projections of a cylinder of base 30 mm diameter and axis 50 mm long, when it is resting on HP on its base.

## OR

8. A cone of base 40 mm diameter and axis 50 mm long is resting on of its generator on HP. The top view of the axis of cone makes an angle of $30^{\circ}$ with VP Draw it's projections.

## UNIT-V

9. Draw the isometric view of a hexagonal prism, with side of base 25 mm and axis 60 mm long, The prism is resting on its base on H.P. with an edge of the base parallel to V.P. Use the box method

## OR

10. Draw the front view, top view, and left side views of the part shown in the figure (dimensions in mm ).

$\square$
Code: 20A511T

## R-20

I B.Tech. I Semester Regular Examinations June 2021

## Problem Solving through C Programming

( Common to All Branches )
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two mark.
3. Answer ALL the questions in Part-A and Part-B

## PART-A

(Compulsory question)

1. Answer ALL the following short answer questions $\quad(5 \times 2=10 \mathrm{M}) \quad$ co $\begin{gathered}\text { Blooms } \\ \text { Level }\end{gathered}$
a) Define high level language and low level language CO1 L2
b) Define an array. How to store elements in an array? CO 2
c) Write a program to check whether the string is palindrome or not CO 3
d) Compare and contrast calloc() and malloc(). CO4
e) Give various modes of opening a file CO5

## PART-B

Answer five questions by choosing one question from each unit ( $5 \times 12=60 \mathrm{Marks}$ )

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I
2. a) Briefly explain about the basic data types that $C$ language supports. $\quad 6 \mathrm{M} \quad \mathrm{CO1}$
b) What is flow chart? How it is useful in writing the programs? Explain about
different symbols in flow chart.

## OR

3. a) Is there any difference between the pre-decrement and post decrement operators? Explain with suitable examples.

6M C01
L2
b) Write a pseudo code for swapping two numbers without using any temporary variable.

6M CO1

## UNIT-II

4. a) Compare the use of if-else construct with that of conditional operator. Explain with examples.

6M CO2
b) Give the control flow diagram of the for loop. How is the execution of 'for' loop proceeds?

6M CO2
5. a) Describe about two dimensional arrays, initializing the two dimensional arrays and accessing elements in such arrays.

6M CO2
b) Write a program to find an element present in a given array using Search techniques.


