Hall	Ticket Number :			_
Code	e: 20AC11T	R-2	20	
cout	I B.Tech. I Semester Regular Examinations July 2021 Algebra and Calculus (Common to All)			
Max.	· · · ·	Time: 3	3 Hou	rs
Note:	 Question Paper consists of two parts (Part-A and Part-B) In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
	<u>PART-A</u> (Compulsory question)			
1.	Answer ALL the following short answer questions $(5 \times 2 = 10M)$		со	Blooms Level
a)	Find the eigen values of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$		1	1,2
-	Find the symmetric matrix corresponding to the quadratic form $x^2 + 6xy + 5y$	l^2	2	1,2
c)	If x= r cos Θ , y= r sin Θ then find $\frac{\partial(x, y)}{\partial(r, y)}$		3	1.2
d)	Find $\int_{0}^{1} \int_{0}^{x} xy dy dx$		4	1,2
e)	Define Gamma function		5	1
Ang	<u>PART-B</u> wer any <i>five full</i> questions by choosing one question from each unit (5 x 12) - 60 N	Iorlza)
Allsv	wer any <i>five juit</i> questions by choosing one question from each unit (5 x 12	2 – 00 Marks	CO) Blooms Level
	$\begin{bmatrix} \mathbf{UNIT} - \mathbf{I} \\ 0 & 1 & 2 & -2 \end{bmatrix}$			20101
2. a)	Reduce the matrix $\begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$ to normal form and hence find the rank.	6M	1	1,2
b)	Show that the equations $x + y + z = 6$, $x + 2y + 3z = 14$, $x + 4y + 7z = 30$ are consistent and solve them.	6M	1	1,2
3.	OR Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} -2 & 2 & -3 \end{bmatrix}$			
	$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	12M	1	1,2
	UNIT-II $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$			
4.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and	12M	2	1,2
	hence find A ⁻¹ and A ⁴			
	OR			

- Reduce the quadratic form $3x^2+2y^2+3z^2-2xy-2yz$ to the normal form by 5. 12M 2 1,2 orthogonal transformation
- UNIT-III 6. a) If $x = r \sin_{\mu} \cos \psi$, $y = r \sin_{\mu} \sin \psi$, $z = r \cos_{\mu} then show that \frac{\partial(x, y, z)}{\partial(r - \psi)} = r^{2} \sin_{\mu} \psi$ 6M 3 1,2

b) Find the maximum and minimum values of
$$xy + \frac{a^3}{x} + \frac{a^3}{y}$$
 6M 3 1,2

- 7. Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 12M 3 1,2 UNIT-IV
- 8. a) Evaluate $\int_{a}^{2a} \int_{0}^{\sqrt{2ax-x^2}} xy \, dy \, dx$ 6M 4 1,2

b) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dz \, dy \, dx$$
 6M 4 1,2

OR

9. Change the order of integration and evaluate

$$\int_{0}^{4a} \int_{x^{2}/4a}^{2\sqrt{ax}} dy \, dx \qquad 12M \ 4 \ 1,2$$

UNIT-V
10. a) Show that
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{f}$$
 6M 5 1,2

b) Show that
$$\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$$
 where 'n' is a positive integer and
$$6M \quad 5 \quad 1,2$$
$$m > -1$$

OR

11. a) Evaluate
$$\int_{0}^{1} x^{\frac{3}{2}} (1-x^{2})^{\frac{5}{2}} dx$$
 6M 5 1,2
b) Evaluate $\int_{0}^{\frac{11}{2}} \sin^{10} x dx$ 6M 5 1,2

D) Evaluate
$$\int_{0}^{2} \sin^{10} d_{\pi}$$
 6M 5 1,2

*** End ***

							1	ı	1					
Hall Ticket Number :														
Code: 20AC12T											R-20			
I B.Tec	I B.Tech. I Semester Regular Examinations July 2021													
			pplie	-					•					
		(Coi	mmor	n to E	EE &	ECE)							
Max. Marks: 70										-	Time: 3	3 Hou	rs	
Note: 1. Question Paper				*****		_								
 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 														
		(C	ompul	sory (questi	o n)							Bloom	
1. Answer ALL the	followin	g sho	rt ansv	ver qu	uestio	ns	(5	X 2 =	= 10M)		СО	Leve	
a) Mention any four	applicatio	ons of i	interfei	ence	in Eng	jineer	ing fi	eld.				CO1		
b) What is Bohr's ma	agneton a	and giv	ve its e	xpres	sion.							CO2		
c) State the Gauss t	heorem f	or dive	ergence	∋?								CO3		
d) Define drift and d	iffusion cu	urrents	6									CO4		
e) Write the applications of nanomaterials.								CO5						
			P	ART-	<u>B</u>									
Answer any <i>five full</i> qu	uestions h	oy cho	osing	one qu	iestio	n froi	n ea	ch ur	nit (5 2	x 12	= 60 N	larks)	
		_									Marks	со	Blooms Level	

				Lever
		UNIT–I		
2.	a)	Explain interference in thin films by reflection of light.	8M	CO1
	b)	In Newton's rings experiment, if the radius of the 8 th and 12 th rings are 0.25 mm and 0.3mm respectively, find the wavelength of the light used if the radius of curvature of plano-convex lens is 100cm.	4M	CO1
		•	-1111	COT
		OR		
3.	a)	Explain diffraction grating experiment to determine the wave length of a monochromatic source.	8M	CO1
	b)	Calculate the thickness of a quarter wave plate for a monochromatic light of wave length 600nm, if the refractive indices of ordinary and extraordinary rays		
		in the medium are 1.5442and 1.5533 respectively	4M	CO1
		UNIT–II		
4.	a)	Define Ionic polarization and derive an expression for Ionic polarizability	6M	CO2
	b)	Explain Ferro magnetism through hysteresis with neat figures	6M	CO2
		OR		
5.	a)	Give the classification of magnetic materials into dia, para and ferro magnetic		
	-	materials on the basis of magnetic moment	6M	CO2
	b)	Explain in detail about the different types of polarization mechanisms in		
		dielectrics.	6M	CO2

	UNIT–III		
a)	State and explain Poynting theorem	6M	CO3
b)	Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 & 1.498 respectively.	6M	CO3
	OR		
a)	Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation.	6M	CO3
b)	Discuss the application of optical fibers in Medical field and in industry as a sensor.	6M	CO3
a)		6M	CO4
b)	Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids	6M	CO4
	OR		
a)	What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications.	7M	CO4
b)	Differentiate direct and indirect band gap semiconductors with examples	5M	CO4
a)	Explain Meissner effect. Write notes on magnetic levitation	6M	CO5
b)	Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials.	6M	CO5
	OR		
a)	Describe BCS theory of superconductivity	6M	CO5
b)	Discuss any one method to characterization of the nanomaterials	6M	CO5
	a) b) a) b) a) b) a) b)	 a) State and explain Poynting theorem b) Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 & 1.498 respectively. OR a) Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation. b) Discuss the application of optical fibers in Medical field and in industry as a sensor. UNIT-IV a) Derive an expression for density of holes in an intrinsic semiconductor b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids OR a) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. b) Differentiate direct and indirect band gap semiconductors with examples UNIT-V a) Explain Meissner effect. Write notes on magnetic levitation b) Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials. OR a) Describe BCS theory of superconductivity 	 a) State and explain Poynting theorem b) Define acceptance angle and numerical aperture. Calculate the acceptance angle and Numerical Aperture of a given optical fiber, if the refractive index of core and cladding are 1.563 & 1.498 respectively. a) Show that the electromagnetic waves for non-conducting media is transverse in nature and have components of E and H in directions perpendicular to the direction of propagation. b) Discuss the application of optical fibers in Medical field and in industry as a sensor. a) Derive an expression for density of holes in an intrinsic semiconductor b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids a) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. b) Differentiate direct and indirect band gap semiconductors with examples b) Differentiate direct. Write notes on magnetic levitation c) UNIT-V a) Explain Meissner effect. Write notes on magnetic levitation b) Describe the process of "chemical vapour deposition" method of fabrication of nanomaterials. c) R a) Describe BCS theory of superconductivity

*** End ***

Hall Ticket Number :			
Code: 20A411T	R-20	0	
I B.Tech. I Semester Regular Examinations July 2021 Basic Electrical and Electronics Engineering (Electronics and Communication Engineering) Max. Marks: 70 ******** Note: 1. Question Paper consists of two parts (Part-A and Part-B)	Time: 3	Hour	rs
 In Part-A, each question carries Two mark. Answer ALL the questions in Part-A and Part-B 			
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$		СО	Blooms Level
a) What are Active and Passive elements?	С	O1	L1, L2
b) State Kirchhoff's Current law.	С	02	L1, L2
c) Write one difference between an Intrinsic and Extrinsic semiconductor.	С	O3	L1, L2
d) What is Transformer Utilization factor (TUF)?	С	04	L1, L2
e) Large signal current gain '' for common emitter configuration, is	С	O5	L1, L2
PART-B	<0.3.5		
Answer any <i>five full</i> questions by choosing one question from each unit (5 x 12) Blooms
	Marks	СО	Level
UNIT-I	CM		
a) Discuss briefly about Voltage and Current Sources.b) Write about resistance color coding in detail.	6M 6M	CO1	L1, L2
OR	0101	CO1	L1, L2
What is a DSO? Elaborate in detail about the construction and working of a	а		
DSO.	12M	CO1	L1, L2
UNIT–II			
a) Explain briefly about Norton's Theorem.	6M	CO2	L1, L2
b) Find R _{AB} in the circuit shown in Figure.			
$ \begin{array}{c} $			
	6M	CO2	L1, L3
OR			

5. a) State Kirchhoff's Laws. Find the current flowing through the 6 Ohm resistor.

			8M	CO2	L2, L3
	b)	Write briefly about Superposition Theorem.	4M	CO2	L1, L2
		UNIT–III			
6.	a)	Justify how a Zener diode acts as a Voltage Regulator.	6M	CO3	L1, L2
	b)	Discuss the Volt-Ampere characteristics of a P-N Diode under Forward-bias			
		condition. OR	6M	CO3	L1, L2
7	-)				
7.	a)	Derive the diode current equation for a P-N diode with the help of necessary diagrams.	6M	CO3	L1, L2
	b)	The reverse saturation current applied to a silicon PN diode is 10μ A. Calculate the diode current for the forward-bias voltage of 0.6V at 25° C temperature. Take =2.	6M	CO3	L1, L3
			OW	003	L1, L3
8.	a)	The following parameters are associated with for Half wave rectifiers. Define			
01	ч)	them.			
		i. Ripple factor.			
		ii. Efficiency			
		iii. Peak Inverse Voltage	6M	CO4	L1, L2
	b)	Briefly differentiate between a Half wave rectifier and Full wave rectifier.	6M	CO4	L1, L2
0		OR			
9.		A 230V, 60 Hz voltage is applied to the primary of a 5:1 step-down center-tap transformer used in a full wave rectifier having a load of 900 ohms. If the diode			
		resistance and secondary coil resistance together has a resistance of			
		100ohms. Determine			
		a) DC voltage across the load			
		 b) DC current flowing through the load 			
		c) DC power delivered to the load			
		d) PIV e) Ripple voltage and its frequency			
		f) Efficiency	12M	CO4	L2, L3
		UNIT-V			
10.		Describe in detail about the operation, Input and output characteristics of a			
		transistor in Common Emitter Configuration.	12M	CO5	L1, L2
		OR			
11.		a. Draw the symbols for a NPN and PNP transistors.			
		b. Explain the construction and operation of n-p-n transistor with neat	4M	00-	
		sketches *** End ***	8M	CO5	L1, L2

	Н	lall Ticket Number :	R-20		
	Co	de: 20A312T-C	K-20		
		I B.Tech. I Semester Regular Examinations July 2021			
		Engineering Drawing (Electronics and Communication Engineering)			
	Мо		ne: 3 l	Hours	
		swer any five full questions by choosing one question from each unit (5x14 :			

			Marks	СО	Bloom Level
		UNIT–I			
1.		Construct an ellipse, when the distance of the focus from the directrix is equal to			
		65mm and eccentricity is 2/3. Also draw tangent and normal to the curve at a point 40mm from the directrix.	1 4 1 4	004	
		OR	14M	CO1	
2.		Draw a cycloid given the diameter of a rolling circle as d=50mm. Draw a normal and			
		tangent at any point on the curve	14M	CO1	
		UNIT–II			
3.		A point A is 25mm above the H.P & 35mm in front of the V.P. Another point B is			
		40mm behind the V.P. & 30mm below the H.P. Draw the projections by taking			
		the distance between the projectors as 50mm.	14M	CO2	
4.		OR Line AB is 75 mm long and it is $30^{\circ} \& 40^{\circ}$ Inclined to HP & VP respectively. End A is			
		12mm above HP and 10 mm in front of VP. Draw its projections and locate HT & VT	14M	CO2	
		UNIT–III			
5.	a)	A circular plate of negligible thickness and 60mm diameter appears as an ellipse in			
		the top view, having its major axis 60mm and minor axis 30mm. Draw its projections			
		and find the inclination of the plate with HP.	8M	CO3	
	b)	A pentagonal plate of side 35mm is placed with its surface vertical and parallel to VP. Draw its projections when one of the sides is perpendicular to HP.	6M	CO3	
		OR	OIVI	003	
6.		A regular hexagon of side 35 mm has a corner in the HP. Its surface is inclined at			
		45° to HP. The top view of the diagonal through the corner in HP makes an angle of			
		60º with VP. Draw its projections.	14M	CO3	
-					
7.		Draw the projections of a hexagonal prism of base 25mm side and axis 60mm long, when it is resting on one of its side of the base on HP. The axis of the solid			
		is inclined at 45° to the HP	14M	CO4	
		OR		001	
8.		A cylinder 40 mm diameter and 50 mm axis is resting on one point of a base circle			
		on VP while it's axis makes 45° with VP and FV of the axis 35° with HP.	4 4 1 4		
		Draw projections	14M	CO4	
9.		UNIT-V Draw the isometric view of a cone, base 40mm diameter and axis 55mm long.			
5.		(a) when its axis is vertical and (b) when its axis is horizontal	14M	CO5	
		OR			
10.		Draw the front view, top view, right and left side views of the object shown in figure			
		(All dimensions in mm).	14M	CO5	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
		10- 10- 10			
		The second secon			
		8			
		1 20			
		80 56 ×			

*** End ***

	Hall Ticket Number :															
	Code: 20A312T-B													R-20		
	I B.Tech	п. I S	em	este	r Re	gulo	ar Ex	ami	inat	ions	July	/ 202	1			
				Eng	inee	ering	g Dr	awi	ng		-					
	(Ele Max. Marks: 70 Answer any five full que				osinę		e que			gine m ec				me: 3 = 70 M		
														Marks	СО	Blooms Level
					UNI						- 11	-1 ¹				
1.	Construct a Hyperbo 40mm and the eccen hyperbola													14M	CO1	
					O											
2.	Draw a hypo cycloid o of 160mm diameter, f normal to it at a point	for or	ne re	voluti	on co e cei	ounte nter c	er cloo	ck wi	se. D	raw a	a tang			14M	CO1	
3.	A point A is 25mm at 40mm behind the V.	P. &	30m	m be	low t	m in he H	.P. D					•		14M	000	
	the distance betweer	i the	proje	ciors	as o Ol		Ι.							1411	CO2	
4.	FV of line AB is 50° i inclined to xy line. If it's projections, find the	end A	A is 1	10 mr	nd m n abo	ieasu ove H ons of	IP ar	nd 15	mm	in fro				14M	CO2	
5.	Draw the projections on the ground and in with the ground.		-		xago	n of s				-				14M	CO3	
0		المثام	. 40	l-	O						- I - 1	CO ⁰ to				
6.	A regular pentagon o The surface makes a					VP. [60° lo	пΡ.	14M	CO3	
7.	Draw the projections when it is resting on l		-				mm c	liame	eter a	and a	xis 50) nm l	ong,	14M	CO4	
8.	A cone of base 40 mr on HP. The top view projections.				axis	50 m		•		0		•		14M	CO4	
					UNI	T–V									004	
9.	Draw the isometric vi 60mm long, The pris parallel to V.P. Use tl	m is	resti	ng oi	onal n its	prism base								14M	CO5	
10.	Draw the front view, dimensions in mm).	top vi	iew,	and I	OI eft si		ews	of the	part	t shov	wn in	the fig	gure			
				\$	ン	\checkmark	~									

Hall Ticket Number :			
Code: 20A511T	R-2	0	
I B.Tech. I Semester Regular Examinations June 2021 Problem Solving through C Programming (Common to All Branches)	Time of f		
Max. Marks: 70 ********	Time: 3	S HOU	IS
 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two mark. 3. Answer ALL the questions in Part-A and Part-B 			
<u>PART-A</u> (Compulsory question)			
1. Answer ALL the following short answer questions $(5 \times 2 = 10M)$	(co ^I	Blooms Level
a) Define high level language and low level language	С	01	L2
b) Define an array. How to store elements in an array?	С	02	L2
c) Write a program to check whether the string is palindrome or not	С	03	L1
d) Compare and contrast calloc() and malloc().		04	L5
e) Give various modes of opening a file	С	05	L4
PART-B		`	
Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 12 = 0$	ou Mark	S)	
	Marks	со	Blooms Level
UNIT–I 2. a) Briefly explain about the basic data types that C language supports.	6M	CO1	L5
b) What is flow chart? How it is useful in writing the programs? Explain about		001	20
different symbols in flow chart.	6M	CO1	L1
OR			
 a) Is there any difference between the pre-decrement and post decrement operators? Explain with suitable examples. 	it 6M	CO1	L2
 b) Write a pseudo code for swapping two numbers without using any temporar variable. 	y 6M	CO1	L1
4. a) Compare the use of if-else construct with that of conditional operator			
Explain with examples.	6M	CO2	L5
b) Give the control flow diagram of the for loop. How is the execution of 'for loop proceeds?	r' 6M	CO2	L4
OR			
5. a) Describe about two dimensional arrays, initializing the two dimensional arrays and accessing elements in such arrays.	al 6M	CO2	L2
 b) Write a program to find an element present in a given array using Search techniques. 	h 6M	CO2	L1
	Ра	ge 1 o	f 2

		Code: 20A511T			
		UNIT–III			
6.	a)	Write a C program with recursive function that counts the number of vowels in a string.	6M	CO3	L1
	b)	Describe the concept of functions and the mechanism of a function call. Discuss the advantages of functions	6M	CO3	L2
		OR			
7.	a)	Explain about C Preprocessor with an example.	6M	CO3	L1
	b)	Illustrate the storage classes extern, static and auto with an example	6M	CO3	L4
		UNIT–IV			
8.	a)	Define a pointer. How to initialize and declare pointer variables? Explain the same with examples	6M	CO4	L2
	b)	Write a recursive program for finding the n th Fibonacci value, using functions.	6M	CO4	L1
		OR			
9.	a)	Differentiate user defined and predefined function. Explain with one			
		example.	6M	CO4	L2
	b)	Explain how to pass one dimensional arrays to functions.	6M	CO4	L4
		UNIT–V			
10.	a)	Differentiate between structures and unions, and write the syntax for nested structures.	6M	CO5	L2
	b)	What is an enumerated data type? Explain with example.	6M	CO5	L1
		OR			
11.	a)	Write a program to count no of words and lines in a file	6M	CO5	L1
	b)	Describe the process of handling errors during file operations. *** End ***	6M	CO5	L2