Hall Ticket Number :			
Code: 23AHS15T	R-23	6	
B.Tech. I Semester Regular Examinations January 2024	ļ		
Engineering Physics			
(Common to EEE, ECE, CSE(AI) and AI&DS)			
Max. Marks: 70 ********	Time: 3 I		
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks.			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
Answer all the following short answer questions $(10 \times 2 = 20 \text{ M})$)	СО	BL
a) Define interference of light.)		
,		CO1	L
 Differentiate between Fresnel and Fraunhofer diffraction. Define Grade lettice and Design 		CO1	L
c) Define Space lattice and Basis.		CO2	L
d) Write the coordination number and packing fraction of Simple	e cubic		
structure.		CO2	L
e) Express the relation between electric vectors E, D and P.		CO3	L
f) Define magnetic susceptibility and permeability.		CO3	L
g) Define Heisenberg's uncertainty principle.		CO4	L
 List any two demerits of classical free electron theory. 		CO4	L
i) Illustrate the energy band diagrams of conductors, insulato	ors and	ł	
semiconductors.		CO5	L
j) List two applications of Hall effect.		CO5	L
PART-B			
Answer <i>five</i> questions by choosing one question from each unit (5 x 10 =			
	Marks	CO	BL
UNIT-I	714		
2. a) Explain the interference in thin films by reflection.	<i>i</i> ivi	CO1	L2
b) Newton rings are observed in reflected light of wavelength			
5900A ^o . The diameter of 10 th dark ring is 0.5cm. Assess	214		
the radius of curvature of lens used.	3101	CO1	Lt
OR			
3. a) Evaluate the resultant intensity equation in case of			
Fraunhofer diffraction due to single slit.		CO1	Lt
b) Describe the working of Nicol's prism with a neat diagram.	5M	CO1	L2

		UNIT-II			
4.		Define packing fraction and evaluate packing fraction of			
		SC and BCC structures.	10M	CO2	L5
-		OR CR			
5.		Explain the crystal structure determination by Laue's method with a neat diagram.	1014	CO2	
			TON	002	L2
6.	a)	Deduce the expression for electronic polarizability.	7M	CO3	L5
	b)	The dielectric constant of He gas at NTP is 1.0000684.			
		Calculate the electronic polarizability of He atoms if the			
		gas contains 2.7×10^{25} atoms /m ³ .	3M	CO3	L3
		OR			
7.	a)	Qualitatively explain Weiss theory of ferromagnetism and	714		
	b)	draw the hysteresis loop.	/ IVI	CO3	L4
	D)	The magnetic field intensity in a piece of ferric oxide is 10^6 amp/m. If the susceptibility of the material is 1.5×10^{-3} ,			
		calculate the magnetization of the material.	3M	CO3	L3
		UNIT-IV			
8.		Give the significance of wave function and determine			L2,
		Schrodinger time independent wave equation.	10M	CO4	L3
		OR			
9.		Determine the expression for electrical conductivity based	4014		
		on quantum free electron theory.	TOM	CO4	L3
10.		Derive an expression for density of electrons in intrinsic			
		semiconductor.	10M	CO5	L6
		OR			
11.	a)	Discuss drift and diffusion currents.	4M	CO5	L2
	b)	Derive Hall co-efficient in hall effect	6M	CO5	L3
		*** End ***			

ſ	Hall Ticket Number :		
L	Code: 23A0312T-C	R-23	
	B.Tech. I Semester Regular Examinations January 2024		
	Engineering Graphics		
	(Electrical and Electronics Engineering)		
	Max. Marks: 70 Tin	ne: 3 Ho	ours
	Answer <i>five</i> questions by choosing one question from each unit ($5 \times 14 = 70$ N	(Jarks)	
		Marks	CO
	UNIT-I		
	A coin of 40 mm diameter rolls over horizontal table without		
-	slipping. A point on the circumference of the coin is in contact		
	with the table surface in the beginning and after one complete		
	revolution. Draw and name the curve. Draw a tangent and normal		
	at any point on the curve.	14M	1
	OR		
	Draw an epicycloid having a generating circle of diameter 50		
	mm and a directing curve of radius 100 mm. Also draw a		
	normal and a tangent at any point M on the curve.	14M	1
			•
	A line AB of 70 mm long, has its end A at 10 mm above HP		
•	and 15 mm in front of VP. Its front view and top view measure		
	50 mm and 60 mm respectively. Draw the projections of the		
	line and determine its inclinations with HP and VP.	14M	2
	OR	1 1101	Z
-	A line AB has its end A in HP and 40mm in front of VP. Its front		
•	view is inclined 50° to XY and has a length of 70mm. The other		
	end B is in VP. Draw its projections. Also, find the true length		
	and true inclinations of the line	14M	2
			2
	A thin 30° -60° set square has its longest edge in the VP and		
-	inclined at 30° to the HP. Its surface makes an angle of 45° with		
	the VP. Draw the projections.	14M	3
	OR		5
_	A pentagonal prism, side of base 25mm and axis 50mm long,		
•	rests with one of its edges on HP such that the base containing		
	that edge makes an angle of 30° to HP and its axis is parallel to		
	VP. Draw its projections.	14M	3
	UNIT-IV		Ū
	A cone of 40 mm diameter 70 mm height is resting on its base in		
•	H.P. It is cut by a section plane perpendicular to V.P, parallel to		
	one of the generators and passes through a point 15 mm below		
	the apex. Draw the sectional top view and true shape of section.	14M	4
	$\mathbf{u} \in \mathbf{u} \in \mathbf{U}$	1 - 1 1 1 1	4

14M 3 4 Page **1** of **2**

14M

 A square pyramid of base side 25 mm and altitude 50 mm rests on its base on the HP with two sides of the base parallel to VP. It is cut by a plane bisecting the axis and inclined at 30⁰ to the base . Draw the development of the lower part of the pyramid.

4 3

UNIT-V

9. Draw (i) Front view (ii) Both side views (iii) Top view of Figure. (All dimensions are in mm)

14M 5 4

OR

10. Draw the isometric views for the below figure. (All dimensions are in mm).

14M 5 4

Hall Ticket Number :								
Q.P.Code: 23A0511T	R-23							
B.Tech. I Semester Regular Examinations January 2024								
Introduction to Programming								
(Common to All Branches) Max. Marks: 70	ime: 3 Ho	SUIRS						
******		5015						
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B								
<u>PART-A</u> (Compulsory question)								
Answer <i>all</i> the following short answer questions $(10 \times 2 = 20 \text{ M})$		со						
Define flowchart and explain different symbols used for constructing fl	owchart.							
Evaluate the expression a+b*c/d where a=20, b=10, c=15 and d=	=5. Also)						
print the value through C program.		1						
List the control structures in C.		2						
List the decision-making statements in C.		2						
e) Explain recursion with example.								
List the types of functions in C.		3						
Display the first n natural number with user-defined function		4						
Compare structure and union in terms of memory allocation with an electric operations of a file	example							
List basic operations of a file. Explain a file opening mode with an example.		5						
		5						
$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 10 = 50	Marks)							
	Marks	СО	E					
UNIT–I								
2. a) Differentiate among compiler, assembler, and interpreter.	5M	1						
b) Discuss tokens in C with examples.	5M	1						
OR								
3. a) Explain all the data types with their ranges and examples.	5M	1						
b) Summarize Type Conversion and type casting in C.	5M	1						
 a) Discuss briefly about multi-way selection statements with an oxample 		~						
example.	5M	2						
b) Write a C program to find the sum of odd numbers using	5M	2						
jumping statements.								

		Q.F.COUE	. 23AU31		
5.	a)	Discuss about different format strings in c	5M	2	2
	b)	Write a C program to compute the real roots of a quadratic			
		equation $a^*x^2 + b^*x + c = 0$. The program should request for			
		the values of the constants a, b and c and print the values of			
		root1 and root2.			
		Use the following rules:			
		 i. No solution, if both a and b are zero There is only one root, if a=0 			
		ii. There are no real roots, if b ² -4*a*c is negative			
		iii. Otherwise, there are two real roots.			
		Write a C program to test all the above conditions	5M	2	4
		UNIT–III			
6.	a)	List the string handling function with an example	5M	3	2
	b)	Write a C program to copy the string str2 into str1 without			
		using strcpy() function	5M	3	2
		OR			
7.	a)	Explain call by value and call by reference with examples.	5M	3	2
	b)	Write a C program to check whether a string is palindrome			
		or not without using string function.	5M	3	2
		UNIT–IV			
8.	a)	Explain usage of structure in terms of definition, declaration			
		and accessing members with syntax and example	5M	4	2
	b)	Differentiate structures and unions.	5M	4	2
		OR			
9.	a)	What are pointers? Describe pointer arithmetic with examples	5M	4	2
	b)	Explain call by reference mechanism with an example program	5M	4	2
		UNIT–V			
10.	a)	C program to read name and marks of n number of students			
		and store them in a file.	5M	5	2
	b)	Write C program that uses both recursive and non-recursive			
		functions to find the sum of n natural numbers.	5M	5	2
		OR			
11.	a)	Write C program that uses both recursive and non-recursive			
		functions to find the factorial of a given number.	5M	5	2
	b)	Explain various storage classes in C with an example	5M	5	2
		*** End ***			

Q.P.Code: 23A0511T

	Hall Ticket Number :			
		R-23		
	QPCode: 23AHS11T			
	B.Tech. I Semester Regular Examinations January 2024			
	Linear Algebra and Calculus (Common to All Branches)			
		ime: 3 H	ours	

	Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)			
1. A	Answer all the following short answer questions $(10 \times 2 = 20 \text{ M})$		СО	BL
a)	Define the rank of a matrix. What is the rank of an identity matrix of order n?	(CO1	L1
b)	State Cauchy's Binet formula.		CO1	L1
c)	Show that the Eigen values of a matrix A and its transpose A ¹ are same.		CO2	L1
d)	State Cayley-Hamilton theorem.	(CO2	L1
e)	Stare Rolle's theorem.		CO3	L1
f)	State Maclaurin's theorem with Lagrange's form of remainder.		CO3	L1
	If $f(x, y) = ax^2 + 2hxy + by^2$, then find its first and second order partial derivatives.		CO4	L2
h)	If $x = r \cos_{y}$, $y = r \sin_{y}$ then find $J\left(\frac{x, y}{r, y}\right)$.		CO4	L2
	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$.		CO5	L2
j)	Evaluate $\int_{0}^{0} \int_{0}^{1} \int_{0}^{1} \frac{1}{x^{2}} + \frac{1}{y^{2}} \int_{0}^{1} \frac{1}{x^{2}} + \frac{1}{y^{2}} \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} \frac{1}{x^$	(CO5	L1
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 10 = 50$	Marks) Marks	со	ום
	UNIT–I	IVIAI KS	00	BL

				T	5	- 1	1			
2. a		Find the rank of the matrix $B = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 1 & 0 \end{vmatrix}$	1	0	1	1				
	a)		2	· .						
			1	1	-2	0	1	5M	CO1	L2
	L)	Calve by Cause alimination met	ام م ما	م ما د	falles					

b) Solve by Gauss elimination method the following equations x-2y+3t=2, 2x+y+z+t=-4, 4x-3y+z+7t=8. 5M CO1 L3 OR

3. Show that the system of equations

$$2x_1 - 2x_2 + x_3 = \{x_1, 2x_1 - 3x_2 + 2x_3 = \{x_2, -x_1 + 2x_2 = \}x_3$$

can posses a non trivial solution only if $\} = 1, \} = -3$. Obtain the solution in each case.

10M CO1 L3 Page **1** of **2**

QPCode: 23AHS11T

UNIT–II

4. Verify Cayley-Hamilton theorem for the following matrix and hence find the

inverse $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$

6.

10M CO2 L3

10M CO2 L3

OR

5. Reduce the following quadratic form $2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into canonical form or sum of squares through orthogonal reduction and hence find the nature.

UNIT-III
State first mean value theorem, and using it prove that
$$(0 < a < b < 1)$$

$$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}.$$
Hence show that $\frac{f}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{f}{4} + \frac{1}{6}.$
10M CO3 L3

7. Expand \log_{e}^{x} in powers of (x-1) and hence evaluate $\log_{e}^{1.1}$ correct to 4 decimal places. 10M CO3 L3

UNIT-IV

8. If
$$u = x^2 - y^2$$
, $v = 2xy_{\text{and}} x = r \cos_u$, $y = r \sin_u$, find $\frac{\partial(u, v)}{\partial(r, u)}$. 10M CO4 L3

9. If $u = log(x^3 + y^3 + z^3 - 3xyz)$ then show that $(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z})_z u = \frac{-9}{(x+y+z)^2}$ **UNIT-V** 10. Change the order of integration in $I = \int_{0}^{1} \int_{0}^{2-x} xy dx dy$ and hence evaluate the same.

10M CO5 L3

OR

11. Evaluate, by changing to spherical polar coordinates

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$$
10M CO5 L4
*** End ***

		1 1								1					
	Hall Ticket Number :										[
С	ode: 23A0211T											R-23			
_	B.Tech. I	Semest	er R	egular	Exan	nina	ition	is Ja	nuc	ary 2	2024				
	Bas	ic Elect	rico	al & Ele	ctro	nics	s Eng	gine	eri	ng					
		Commor	n to I	EEE, ECE	e, Al8	DS o	and	CSE	(AI))						
N	1ax. Marks: 70			****	****						Tin	ne: 3 H	our	S	
N	ote: 1. Question Paper	r consists	of tv	vo parts	(Part	- 1 an	nd Pa	rt-2)							
	2. Use separate A	nswer bo	oklet	s for Pa	rt-1 a	nd P	art-2	2							
	3. Part-1 & Part-2	of questi	on p	aper cor	sists	of Pa	art-A	& Pa	art-B						
	4. In Part-A, each	•													
	5. Answer ALL the	•						_							
		PART-	1 (Ba	<u>sic Elect</u> PAR		Engir	neeri	ing)							
			(Co	mpulsor		estio	n)								
	1. Answer all the fe	ollowing	•	•			•	S	(5	X 1	l = 5N	1)	со		BL
	a) State the limi								·				1		L2
b) Define power factor in a AC circuit.											1		L1		
c) What is the purpose of magnetic core in a transformer?											2		L2		
d) List out some of non-conventional energy sources.											3		L2		
e) Explain the function of fuse element.										3		L2			
				PAR											
	Answer five question	is by cho	osin	g one qu	estic	n fro	om e	ach	unit	(3 x	10 = 3	0 Mark	s)		
												Mark	s C	0	ΒL
				UNI	T–I										
2. a)	State and Explain	n Kirchh	off I	_aws w	ith e	xan	nple	s.				5N	1	1	L1
b)	The voltage and	current	thro	ugh cir	cuit	elen	nen	ts a	re						
	v = 100 sir	n (314 t	+ 45	5°) volts	6										
	i = 10 sin (314 t +	315	°) amp	eres										
	(i) Identify the	circuit e	elem	ents.	(ii) l	Find	l th	e v	alue	e o	f the				
	elements. (iii) Ol	otain an	exp	ressio	n for	pov	ver.					5N	1	1	L3
				O	R										
3. a)	An instantaneous	s voltag	e of	v(t)=25	50sir	า(wt	-20)V i	is a	ppli	ed to				
	the system. The	-				-		-	-						
	i(t)=20sin(wt+40°)A. Find	the	e follow	ing p	bara	met	ters		•	•				
	i. Active Power			e Powe	• •				Po	wer	and				
	iv. Power factor of					··· · ·	- 					5M	1	1	L3
		51 the 5y	5.01									010	•	1	LJ

 b) In the circuit shown, determine the current through the 20hm resistor and the total current delivered by the battery. Use Kirchhoff's laws

Code: 23A0211T (Part-2) I B.Tech. I Semester Regular Examinations January 2024 **Basic Electrical & Electronics Engineering** (Common to EEE, ECE, AI&DS and CSE(AI)) PART-2(Basic Electronics Engineering) **PART-A** (Compulsory question) 1. Answer **all** the following short answer questions (5 X 1 = 5M)CO BL a) Draw the V-I Characteristics of PN junction diode. 1 1 b) Draw the circuit diagram of a PNP junction transistor in CE configuration. 1 1 c) Draw the h-parameter model of basic transistor. 2 2 d) Draw the structure of D-Flip Flop and write its truth table 3 2 e) Convert the binary code $(1011011)_2$ into decimal equivalent. 3 3 PART-B Answer five questions by choosing one question from each unit (3 x 10 = 30 Marks) Marks CO BL UNIT-I 2. Discuss the V-I characteristics of PN Junction diode and explain its various biasing techniques. 10M 1 2 OR Explain the operation of CE Configuration of BJT and its input 3. a) and output characteristics briefly 8M 1 1 b) Classify the various configurations of a transistor 2M 1 2 UNIT-II Sketch the block diagram of Public Addressing System and 4. a) explain its operation 5M 2 2 b) Explain working of RC coupled common emitter amplifier and draw its frequency response. 5M 2 2 OR How is Zener diode used as voltage regulator? Explain the 5. a) working principle of zener voltage regulator 5M 2 1 With a neat circuit diagram and necessary wave forms explain b) the operation of half wave rectifier. 5M 2 2 UNIT-III 6. Describe the working of JK flip flop with help of its truth table 10M 3 2

OR

7. a) Why a NAND and NOR gates are known as universal gates?
Verify their truth tables.
b) Draw and Explain the operation of Half and Full Adder
5M 3 3