Hall Ticket Number :

B.Tech. I Semester Regular Examinations January 2024
Engineering Physics(Common to EEE, ECE, CSE(AI) and AI\&DS)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)2. In Part-A, each question carries Two marks.3. Answer ALL the questions in Part-A and Part-B
PART-A
(Compulsory question)

1. Answer all the following short answer questions $(10 \times 2=20 M)$ CO BL
a) Define interference of light. CO1 L1
b) Differentiate between Fresnel and Fraunhofer diffraction. CO1 L2
c) Define Space lattice and Basis. CO2 L1
d) Write the coordination number and packing fraction of Simple cubic structure. CO2 L1
e) Express the relation between electric vectors E, D and P. CO3 L2
f) Define magnetic susceptibility and permeability. CO3 L1
g) Define Heisenberg's uncertainty principle. CO4 L1
h) List any two demerits of classical free electron theory. CO4 L1
i) Illustrate the energy band diagrams of conductors, insulators and semiconductors. CO5 L4
j) List two applications of Hall effect. CO5 L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 10=50$ Marks)

UNIT-I

2. a) Explain the interference in thin films by reflection. 7M CO1 L2
b) Newton rings are observed in reflected light of wavelength $5900 A^{\circ}$. The diameter of $10^{\text {th }}$ dark ring is 0.5 cm . Assess the radius of curvature of lens used.

OR

3. a) Evaluate the resultant intensity equation in case of Fraunhofer diffraction due to single slit.
5M CO1 L5
b) Describe the working of Nicol's prism with a neat diagram. $\quad 5 \mathrm{M}$ CO1 \quad L2

UNIT-II

4. Define packing fraction and evaluate packing fraction of SC and BCC structures.

10M CO2

OR

5. Explain the crystal structure determination by Laue's method with a neat diagram.

10M CO2 L2

UNIT-III

6. a) Deduce the expression for electronic polarizability. 7M CO3 L5
b) The dielectric constant of He gas at NTP is 1.0000684 . Calculate the electronic polarizability of He atoms if the gas contains 2.7×10^{25} atoms $/ \mathrm{m}^{3}$.

3M CO3 L3

OR

7. a) Qualitatively explain Weiss theory of ferromagnetism and draw the hysteresis loop.

7M CO3 L4
b) The magnetic field intensity in a piece of ferric oxide is 10^{6} $\mathrm{amp} / \mathrm{m}$. If the susceptibility of the material is 1.5×10^{-3}, calculate the magnetization of the material.

3M CO3 L3

UNIT-IV

8. Give the significance of wave function and determine
$10 \mathrm{M} \mathrm{CO} \quad \mathrm{L}$ L3, Schrodinger time independent wave equation.

OR

9. Determine the expression for electrical conductivity based on quantum free electron theory.

10M CO4

UNIT-V

10. Derive an expression for density of electrons in intrinsic semiconductor.

10M CO5

OR

11. a) Discuss drift and diffusion currents. $4 \mathrm{M} \quad \cos \quad \mathrm{L} 2$
b) Derive Hall co-efficient in hall effect

6 M CO5 L3
\square
Code: 23A0312T-C
B.Tech. I Semester Regular Examinations January 2024

Engineering Graphics
 (Electrical and Electronics Engineering)

Max. Marks: 70

Answer five questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO BL

UNIT-I

1. A coin of 40 mm diameter rolls over horizontal table without slipping. A point on the circumference of the coin is in contact with the table surface in the beginning and after one complete revolution. Draw and name the curve. Draw a tangent and normal at any point on the curve.

14M $1 \quad 1$

OR

2. Draw an epicycloid having a generating circle of diameter 50 mm and a directing curve of radius 100 mm . Also draw a normal and a tangent at any point M on the curve.

UNIT-II

3. A line $A B$ of 70 mm long, has its end A at 10 mm above HP and 15 mm in front of VP. Its front view and top view measure 50 mm and 60 mm respectively. Draw the projections of the line and determine its inclinations with HP and VP.

OR

4. A line $A B$ has its end A in $H P$ and 40 mm in front of $V P$. Its front view is inclined 50° to $X Y$ and has a length of 70 mm . The other end B is in VP. Draw its projections. Also, find the true length and true inclinations of the line

UNIT-III
5. A thin $30^{\circ}-60^{\circ}$ set square has its longest edge in the VP and inclined at 30° to the HP. Its surface makes an angle of 45° with the VP. Draw the projections.
$14 \mathrm{M} \quad 3 \quad 2$

OR

6. A pentagonal prism, side of base 25 mm and axis 50 mm long, rests with one of its edges on HP such that the base containing that edge makes an angle of 30° to HP and its axis is parallel to VP. Draw its projections.

UNIT-IV

7. A cone of 40 mm diameter 70 mm height is resting on its base in H.P. It is cut by a section plane perpendicular to V.P, parallel to one of the generators and passes through a point 15 mm below the apex. Draw the sectional top view and true shape of section.

OR

8. A square pyramid of base side 25 mm and altitude 50 mm rests on its base on the HP with two sides of the base parallel to VP. It is cut by a plane bisecting the axis and inclined at 30° to the base. Draw the development of the lower part of the pyramid.

UNIT-V

9. Draw (i) Front view (ii) Both side views (iii) Top view of Figure. (All dimensions are in mm)

$14 \mathrm{M} \quad 5 \quad 4$
OR
10. Draw the isometric views for the below figure. (All dimensions are in mm).

14M 5
*** End ***
\square
Q.P.Code: 23A0511T
B.Tech. I Semester Regular Examinations January 2024

Introduction to Programming

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions $\quad(10 X 2=20 \mathrm{M})$ CO BL
a) Define flowchart and explain different symbols used for constructing flowchart. 11
b) Evaluate the expression $a+b * c / d$ where $a=20, b=10, c=15$ and $d=5$. Also print the value through C program. 11
c) List the control structures in C. 21
d) List the decision-making statements in C 21
e) Explain recursion with example. 31
f) List the types of functions in C. 31
g) Display the first n natural number with user-defined function 41
h) Compare structure and union in terms of memory allocation with an example 41
i) List basic operations of a file. 51
j) Explain a file opening mode with an example. 51
PART-B
Answer five questions by choosing one question from each unit ($5 \times 10=50$ Marks)
Marks CO BL
UNIT-I
2. a) Differentiate among compiler, assembler, and interpreter.5Mb) Discuss tokens in C with examples.5M $1 \quad 2$
OR
3. a) Explain all the data types with their ranges and examples. 5M 2
b) Summarize Type Conversion and type casting in C. 5M
UNIT-II
4. a) Discuss briefly about multi-way selection statements with an example. 5M 22
b) Write a C program to find the sum of odd numbers using jumping statements.
5. a) Discuss about different format strings in c 5M 2 2b) Write a C program to compute the real roots of a quadraticequation $a^{*} x^{2}+b^{*} x+c=0$. The program should request forthe values of the constants a, b and c and print the values ofroot1 and root2.
Use the following rules:
i. No solution, if both a and b are zero There is only one root, if $\mathrm{a}=0$
ii. There are no real roots, if $b^{2}-4^{*} a^{*} c$ is negative
iii. Otherwise, there are two real roots.
Write a C program to test all the above conditions
5M 24

UNIT-III

6. a) List the string handling function with an example5M32
b) Write a C program to copy the string str2 into $\operatorname{str} 1$ without
b) Write a C program to copy the string str2 into $\operatorname{str} 1$ without using strcpy() function
OR
7. a) Explain call by value and call by reference with examples.
b) Write a C program to check whether a string is palindrome or not without using string function.5M $3 \quad 2$
5M 32
UNIT-IV
8. a) Explain usage of structure in terms of definition, declarationand accessing members with syntax and example5M 42b) Differentiate structures and unions.5M42
OR
9. a) What are pointers? Describe pointer arithmetic with examplesb) Explain call by reference mechanism with an example program5M 425M $\quad 4 \quad 2$
UNIT-V
10. a) C program to read name and marks of n number of studentsand store them in a file.5M$5 \quad 2$
b) Write C program that uses both recursive and non-recursive functions to find the sum of n natural numbers. 5M $5 \quad 2$
OR
11. a) Write C program that uses both recursive and non-recursive functions to find the factorial of a given number. 5M 5 5M 5

B.Tech. I Semester Regular Examinations January 2024

Linear Algebra and Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. In Part-A, each question carries Two marks.
3. Answer ALL the questions in Part-A and Part-B

PART-A

(Compulsory question)

1. Answer all the following short answer questions
(10×2 = 20M)
CO BL
a) Define the rank of a matrix. What is the rank of an identity matrix of order n ?

CO1
L1
b) State Cauchy's Binet formula.

CO1 L1
c) Show that the Eigen values of a matrix A and its transpose A^{1} are same.

CO2 L1
d) State Cayley-Hamilton theorem.

CO2 L1
e) Stare Rolle's theorem. CO3 L1
f) State Maclaurin's theorem with Lagrange's form of remainder.

CO3 L1
g) If $f(x, y)=a x^{2}+2 h x y+b y^{2}$, then find its first and second order partial derivatives.

CO4 L2
h) If $x=r \cos \theta, y=r \sin \theta$ then find $J\left(\frac{x, y}{r, \theta}\right)$.

CO4 L2
i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d x d y}{1+x^{2}+y^{2}}$.

CO5 L2

CO5 L1

PART-B

Answer five questions by choosing one question from each unit ($5 \times 10=50$ Marks)
Marks CO BL

UNIT-I

2. a) Find the rank of the matrix $B=\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$

> 5M CO1 L2
b) Solve by Gauss elimination method the following equations

$$
x-2 y+3 t=2,2 x+y+z+t=-4,4 x-3 y+z+7 t=8
$$

$$
5 \mathrm{M} \quad \mathrm{CO} 1
$$

OR

3. Show that the system of equations
$2 x_{1}-2 x_{2}+x_{3}=\lambda x_{1}, 2 x_{1}-3 x_{2}+2 x_{3}=\lambda x_{2},-x_{1}+2 x_{2}=\lambda x_{3}$ can posses a non trivial solution only if $\lambda=1, \lambda=-3$.
Obtain the solution in each case.
4. Verify Cayley-Hamilton theorem for the following matrix and hence find the inverse $\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$

OR

5. Reduce the following quadratic form $2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$ into canonical form or sum of squares through orthogonal reduction and hence find the nature.

10M CO2 L3

UNIT-III

6. State first mean value theorem, and using it prove that $(0<a<b<1)$,
$\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$.
Hence show that $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.
10M CO3 L3
OR
7. Expand $\log _{e}^{x}$ in powers of $(x-1)$ and hence evaluate $\log _{e}^{1.1}$ correct to 4 decimal places.

10M CO3 L3

UNIT-IV

8. If $u=x^{2}-y^{2}, v=2 x y$ and $x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial(u, v)}{\partial(r, \theta)}$.
$10 \mathrm{M} \mathrm{CO4}$ L3
OR
9. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ then show that $\left(\frac{\boldsymbol{o}}{\boldsymbol{\partial} \boldsymbol{x}}+\frac{\boldsymbol{o}}{\boldsymbol{\partial y}}+\frac{\boldsymbol{o}}{\boldsymbol{\partial} \boldsymbol{z}}\right)_{\mathbf{z}} \mathbf{u}=\frac{-\boldsymbol{9}}{(\boldsymbol{x}+\boldsymbol{y}+z) \bar{z}}$

UNIT-V

10. Change the order of integration in $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ and hence evaluate the same.

10M CO5 L3

OR

11. Evaluate, by changing to spherical polar coordinates

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}
$$

$$
10 \mathrm{M} \text { CO5 L4 }
$$

\square
Code: 23A0211T
B.Tech. I Semester Regular Examinations January 2024

Basic Electrical \& Electronics Engineering

(Common to EEE, ECE, AI\&DS and CSE(AI))
Max. Marks: 70
Time: 3 Hours
Note: 1. Question Paper consists of two parts (Part-1 and Part-2)
2. Use separate Answer booklets for Part-1 and Part-2
3. Part-1 \& Part-2 of question paper consists of Part-A \& Part-B
4. In Part-A, each question carries One marks.
5. Answer ALL the questions in Part-A and Part-B

PART-1 (Basic Electrical Engineering) PART-A
(Compulsory question)

1. Answer all the following short answer questions ($5 \times 1=5 \mathrm{M}$) CO $\quad \mathrm{BL}$
a) State the limitations of Ohms law. $1 \quad$ L2
b) Define power factor in a AC circuit. $1 \quad$ L1
c) What is the purpose of magnetic core in a transformer? 2 L2
d) List out some of non-conventional energy sources. $3 \quad$ L2
e) Explain the function of fuse element. $3 \quad$ L2

PART-B
Answer five questions by choosing one question from each unit ($\mathbf{3 \times 1 0 = 3 0}$ Marks)
Marks CO BL

UNIT-I

2. a) State and Explain Kirchhoff Laws with examples.

5M 1 L1
b) The voltage and current through circuit elements are

$$
\begin{aligned}
& v=100 \sin \left(314 t+45^{\circ}\right) \text { volts } \\
& i=10 \sin \left(314 t+315^{\circ}\right) \text { amperes }
\end{aligned}
$$

(i) Identify the circuit elements. (ii) Find the value of the elements. (iii) Obtain an expression for power.

OR

3. a) An instantaneous voltage of $v(t)=250 \sin \left(w t-20^{\circ}\right) V$ is applied to the system. The current flowing through the system is given by $i(t)=20 \sin \left(w t+40^{\circ}\right)$ A. Find the following parameters
i. Active Power ii. Reactive Power iii. Apparent Power and iv. Power factor of the system
b) In the circuit shown, determine the current through the 2ohm resistor and the total current delivered by the battery. Use Kirchhoff's laws

5M 1 L3
UNIT-II
4. a) With neat sketch, Explain the construction and working of DC motor.

5M 2 L2
b) Describe the constructional details of an attraction type Ml instrument with the help of a neat diagram.

5M 2 L2

OR

5. a) Define Transformer. Explain the construction and working of single phase transformer.

5M 2 L2
b) Explain the configuration of resistors in a typical Wheatstone bridge setup and mention the type of deflection instrument used.

5M 2 L2
UNIT-III
6. a) Draw the layout of nuclear power plant and explain the function of each component.
$5 \mathrm{M} \quad 3 \mathrm{~L} 2$
b) Outline the key safety protocols that should be followed when working with electrical equipment or circuits.
$5 \mathrm{M} \quad 3 \mathrm{~L} 2$

OR

7. a) Draw the layout of hydro power plant and explain the function of each component.

5M 3 L2
b) Explain the working principle of Miniature circuit breaker.
$5 \mathrm{M} \quad 3 \mathrm{~L} 2$

I B.Tech. I Semester Regular Examinations January 2024

Basic Electrical \& Electronics Engineering

(Common to EEE, ECE, AI\&DS and CSE(AI))

PART-2(Basic Electronics Engineering)
 PART-A
 (Compulsory question)

1. Answer all the following short answer questions $\quad(5 \times 1=5 \mathrm{M}) \quad \mathrm{CO} \quad \mathrm{BL}$
a) Draw the V-I Characteristics of PN junction diode. 1
b) Draw the circuit diagram of a PNP junction transistor in CE configuration. 1
c) Draw the h-parameter model of basic transistor. 2
d) Draw the structure of D-Flip Flop and write its truth table 3
e) Convert the binary code $(1011011)_{2}$ into decimal equivalent. 3

PART-B
Answer five questions by choosing one question from each unit ($\mathbf{3 \times 1 0} \mathbf{x} \mathbf{= 3 0}$ Marks)
Marks CO BL

UNIT-I

2. Discuss the V-I characteristics of PN Junction diode and explain its various biasing techniques.

OR

3. a) Explain the operation of CE Configuration of BJT and its input and output characteristics briefly
b) Classify the various configurations of a transistor
4. a) Sketch the block diagram of Public Addressing System and explain its operation
b) Explain working of RC coupled common emitter amplifier and draw its frequency response.

OR

5. a) How is Zener diode used as voltage regulator? Explain the working principle of zener voltage regulator
b) With a neat circuit diagram and necessary wave forms explain the operation of half wave rectifier.

UNIT-III

6. Describe the working of JK flip flop with help of its truth table $10 \mathrm{M} \quad 3 \quad 2$ OR
7. a) Why a NAND and NOR gates are known as universal gates? Verify their truth tables.
b) Draw and Explain the operation of Half and Full Adder
