	На	III Ticket Number :															
	Q.P	Q.P.Code: 23A0312T-A							R-23								
	B.Tech. I Semester Regular Examinations January 2024																
	Engineering Graphics																
	(CSE (AI) and ECE) Max. Marks: 70 Time: 3 Hours																
	******** Answer <i>five</i> questions by choosing one question from each unit (5 x 14 = 70 Marks)																
	UNIT-I												Marks	СО	BL		
1.	a)	Construct a reg	oular p	enta	aon				on (ofs	ide	30)mn	n bv			
	,	general method	• ·	onte	9011	and		λαg	011	0.0		0.			10M	1	BL1
	b)	Bisect a straigh	nt line A	B of	f len	gth	75n	nm.							4M	1	BL1
		-				C	DR										
2.		A circle of diam	neter 50	mm	rolls	s on	the	out	side	of	ano	th	er c	ircle			
		of diameter 18	0mm w	ithou	ut sl	ippiı	ng.	Drav	w th	ер	ath	tra	ace	d by			
		appoint on the					als	50 C	lraw	the	e no	orr	nal	and			
		tangent to the c	curve ge	enera	ated			•]						14M	1	BL2
3.		Draw the proje	ections	of t	he	-	l IT-l win		oint	s o	n a		om	mon			
0.	3. Draw the projections of the following points on a common reference line keeping the distance between their projectors																
		25mm apart.		-									-				
		a) Point A is 4 V.P.	0mm a	bove	e the	эH.	P. a	and :	25m	nm i	n fr	or	it of	the			
		b) Point B is 40) mm al	ove	the	H.F	o an	d on	the	V.F	».						
		c) Point C is 25										_					
		d) Point D is 25										d t	he	V.P.			
		e) Point E is orf) Point F is 40										4 tl	<u>م</u> م ۱	/ P			
		g) Point G is 25													14M	2	BL2
		3,					DR										
4.		One end P of a	a line F	PQ 5	5 m	m l	ong	is 3	85 m	nm i	n fr	or	nt of	f VP			
		and 25 mm abo										to	the	HP			
		and 30° to the	VP. Dra	w th	e Pr				the	line	P				14M	2	BL2
5.		A hexagonal la	mina o	fsid			IT-II n re		on t	ho	ΗР	or		o of			
0.		its side perpen															
		surface is inclin							•						14M	2	BL2
						C	DR										
6.		A cylinder of dia							•					•			
		on the HP on it base point, so that is axis inclined at 45° to the					1 / 1 / 1	~									
HP and parallel to the VP. Draw its top and front view.								14M	3	BL2							

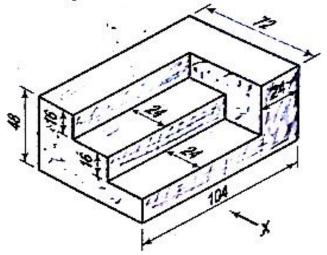
Page **1** of **2**

UNIT-IV

7. A square prism of base side 30 mm and axis length 70 mm rests on one of its ends on the HP with two base sides parallel to the VP. It is cut by a plane perpendicular to the VP and inclined at 30° to the HP. The cutting plane meets the axis at 30 mm from the top base. Draw the front view, sectional top view and true shape of the section.

14M 4 BL2

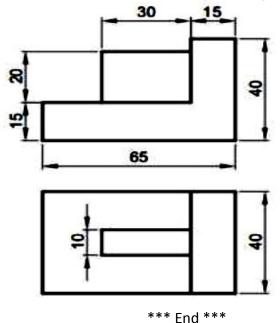
4 BL2


14M

OR

8. A square prism of base side 25 mm and height 50 mm. Draw the development of all the surfaces of the prism.

UNIT-V


9. Draw the (i) Front view (ii) Top View (iii) Side view of the Following Isometric Drawing.

14M 5 BL3

OR

10. Draw the isometric view of the following orthographic views.

14M 5 BL3

	Hall Ticket Number :		7									
C	Q.P.Code: 23А0312Т -B	23										
	B.Tech. I Semester Regular Examinations January 2024											
Engineering Graphics												
٨	(Electronics and Communication Engineering) Max. Marks: 70 Time:	3 Hour	S									

	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 14 = 70$ Mar	K5)										
	UNIT-I	Marks	СО	BL								
1.	Draw a parabola whose focus is at a distance of 50 mm from the											
	directrix. Draw a normal and tangent to the parabola at a point											
	35mm from the focus.	14M	1	2								
	OR											
2.	A circle of diameter 50 mm rolls inside of another circle of											
	diameter 200 mm without slipping. Draw the path traced by											
	appoint on the smaller circle and also draw the normal and											
	tangent to the curve generated.	14M	1	2								
0												
3.	Draw the projections of the following points on a common reference line keeping the distance between their projectors 30mm apart.											
	a) Point A is 20 mm below the H.P and 50 mm in front of the V.P											
	b) Point B is in the H.P and 40 mm behind the V.P.											
	c) Point C is 30 mm in front of the V.P and in the H.P											
	d) Point D is 50 mm above the H.P and 30 mm behind the V.P											
	e) Point E is 20 mm below the H.P and 50 mm behind the V.P											
	f) Point F is in the V.P. and 50 mm below the H.P.											
	g) Point D is 50 mm above the H.P. and 30 mm In front the V.P.	14M	2	2								
4	OR A line FF 95 mm leng has its and F 25mm should the UD and											
4.	A line EF 85 mm long has its end E 25mm above the HP and 20mm in front o the VP. The top and front views of the line have											
	lengths of 55 mm and 70 mm respectively. Draw the projections											
	o the line and find its true inclinations with the VP and the HP.	14M	2	2								
	UNIT-III											
5.	A circular lamina of diameter 60 mm is held vertical with its											
	surface inclined at 45° to the VP. Its center is 40 mm above the											
	HP and 30 mm in front of the VP. Draw its front view and top											
	view.	14M	2	2								
C	OR A however of a state of the second second state of the second s											
6.	A hexagonal pyramid of base edge 40 mm and altitude 80 mm											
	rests on one of its base edge on the HP with its axis inclined at 30° to the HP and parallel to the VP. Draw its projections.	14M	2	2								
			5	2								

14M

14M

4

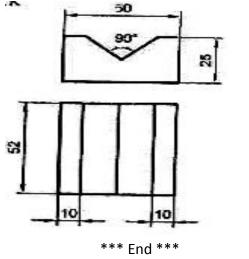
4

2

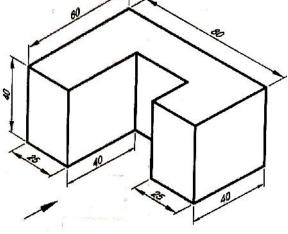
2

UNIT-IV

7. A hexagonal pyramid of base side 25 mm and axis 55 long rests on its base on the HP with two base edges perpendicular to the VP. It is cut by a plane perpendicular to VP and inclined at 30° to the HP meeting the axis at 20 mm from the vertex. Draw the sectional top view and true shape of the section.


OR

- 8. A cylinder of diameter 40 mm and height 50 mm is resting vertically on one of its base on the HP. It is cut by a plane perpendicular to the VP and inclined at 30° to the HP. The plane meets the axis at a point 30 mm from the base. Draw the development of the lateral surface of the lower portion of the truncated cylinder.
- 9. Draw the (i) Front view (ii) Top View (iii) Side view of the Following Isometric Drawings


14M 5 3

OR

10. Draw the isometric view of the following orthographic views.

14M 5 3

Hall Ticket Number :			
Q.P.Code: 23A0511T	R-23		
B.Tech. I Semester Regular Examinations January 2024			
Introduction to Programming			
(Common to All Branches) Max. Marks: 70	ime: 3 Ho	SUIRS	
******		5015	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. In Part-A, each question carries Two marks. 3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
Answer <i>all</i> the following short answer questions $(10 \times 2 = 20 \text{ M})$		со	
Define flowchart and explain different symbols used for constructing fl	owchart.		
Evaluate the expression a+b*c/d where a=20, b=10, c=15 and d=	=5. Also)	
print the value through C program.		1	
List the control structures in C.		2	
List the decision-making statements in C.		2	
Explain recursion with example.		3	
List the types of functions in C.		3	
Display the first n natural number with user-defined function		4	
Compare structure and union in terms of memory allocation with an electric operations of a file	example		
List basic operations of a file. Explain a file opening mode with an example.		5	
		5	
$\frac{PART-B}{PART-B}$ Answer <i>five</i> questions by choosing one question from each unit (5 x 10 = 50	Marks)		
	Marks	СО	E
UNIT–I			
2. a) Differentiate among compiler, assembler, and interpreter.	5M	1	
b) Discuss tokens in C with examples.	5M	1	
OR			
3. a) Explain all the data types with their ranges and examples.	5M	1	
b) Summarize Type Conversion and type casting in C.	5M	1	
 a) Discuss briefly about multi-way selection statements with an oxample 		~	
example.	5M	2	
b) Write a C program to find the sum of odd numbers using	5M	2	
jumping statements.			

			. 23A031		
5.	a)	Discuss about different format strings in c	5M	2	2
	b)	Write a C program to compute the real roots of a quadratic			
		equation $a^{*}x^{2} + b^{*}x + c = 0$. The program should request for			
		the values of the constants a, b and c and print the values of			
		root1 and root2.			
		Use the following rules:			
		 i. No solution, if both a and b are zero There is only one root, if a=0 			
		ii. There are no real roots, if b ² -4*a*c is negative			
		iii. Otherwise, there are two real roots.			
		Write a C program to test all the above conditions	5M	2	4
		UNIT–III			
6.	a)	List the string handling function with an example	5M	3	2
	b)	Write a C program to copy the string str2 into str1 without			
		using strcpy() function	5M	3	2
		OR			
7.	a)	Explain call by value and call by reference with examples.	5M	3	2
	b)	Write a C program to check whether a string is palindrome			
		or not without using string function.	5M	3	2
		UNIT–IV			
8.	a)				
		and accessing members with syntax and example	5M	4	2
	b)	Differentiate structures and unions.	5M	4	2
		OR			
9.	a)	What are pointers? Describe pointer arithmetic with examples	5M	4	2
	b)	Explain call by reference mechanism with an example program	5M	4	2
		UNIT–V			
10.	a)	C program to read name and marks of n number of students			
		and store them in a file.	5M	5	2
	b)	Write C program that uses both recursive and non-recursive			
		functions to find the sum of n natural numbers.	5M	5	2
		OR			
11.	a)	Write C program that uses both recursive and non-recursive			
		functions to find the factorial of a given number.	5M	5	2
	b)	Explain various storage classes in C with an example	5M	5	2
		*** End ***			

Q.P.Code: 23A0511T

	Hall Ticket Number :			
		R-23		
	QPCode: 23AHS11T			
	B.Tech. I Semester Regular Examinations January 2024			
	Linear Algebra and Calculus (Common to All Branches)			
		ime: 3 H	ours	

	Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
	 In Part-A, each question carries Two marks. Answer ALL the questions in Part-A and Part-B 			
	PART-A			
	(Compulsory question)			
1. A	Answer all the following short answer questions $(10 \times 2 = 20 \text{ M})$		СО	BL
a)	Define the rank of a matrix. What is the rank of an identity matrix of order n?	(CO1	L1
b)	State Cauchy's Binet formula.		CO1	L1
c)	Show that the Eigen values of a matrix A and its transpose A ¹ are same.		CO2	L1
d)	State Cayley-Hamilton theorem.	(CO2	L1
e)	Stare Rolle's theorem.		CO3	L1
f)	State Maclaurin's theorem with Lagrange's form of remainder.		CO3	L1
	If $f(x, y) = ax^2 + 2hxy + by^2$, then find its first and second order partial derivatives.		CO4	L2
h)	If $x = r \cos_{y}$, $y = r \sin_{y}$ then find $J\left(\frac{x, y}{r, y}\right)$.		CO4	L2
	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$.		CO5	L2
j)	Evaluate $\int_{0}^{0} \int_{0}^{1} \int_{0}^{1} \frac{1}{x^{2}} + \frac{1}{y^{2}} \int_{0}^{1} \frac{1}{x^{2}} + \frac{1}{y^{2}} \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} \frac{1}{x^$	(CO5	L1
	PART-B			
	Answer <i>five</i> questions by choosing one question from each unit ($5 \ge 10 = 50$	Marks) Marks	со	ום
	UNIT–I	IVIAI KS	00	BL

				1	5	- 1	1			
		Find the rank of the matrix $B =$	1	0	1	1				
2.	a)	Find the rank of the matrix $D =$	3	1	0	2	· .			
			1	1	-2	0	1	5M	CO1	L2
	L)	Calve by Cause alimination met	ام م ما	م ما د	falles					

b) Solve by Gauss elimination method the following equations x-2y+3t=2, 2x+y+z+t=-4, 4x-3y+z+7t=8. 5M CO1 L3 OR

3. Show that the system of equations

$$2x_1 - 2x_2 + x_3 = \{x_1, 2x_1 - 3x_2 + 2x_3 = \{x_2, -x_1 + 2x_2 = \}x_3$$

can posses a non trivial solution only if $\} = 1, \} = -3$. Obtain the solution in each case.

10M CO1 L3 Page **1** of **2**

QPCode: 23AHS11T

UNIT–II

4. Verify Cayley-Hamilton theorem for the following matrix and hence find the

inverse $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$

10M CO2 L3

OR

5. Reduce the following quadratic form $2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into canonical form or sum of squares through orthogonal reduction and hence find the nature.

6. State first mean value theorem, and using it prove that
$$(0 < a < b < 1)$$
,

$$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}.$$
Hence show that $\frac{f}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{f}{4} + \frac{1}{6}.$
10M CO3 L3

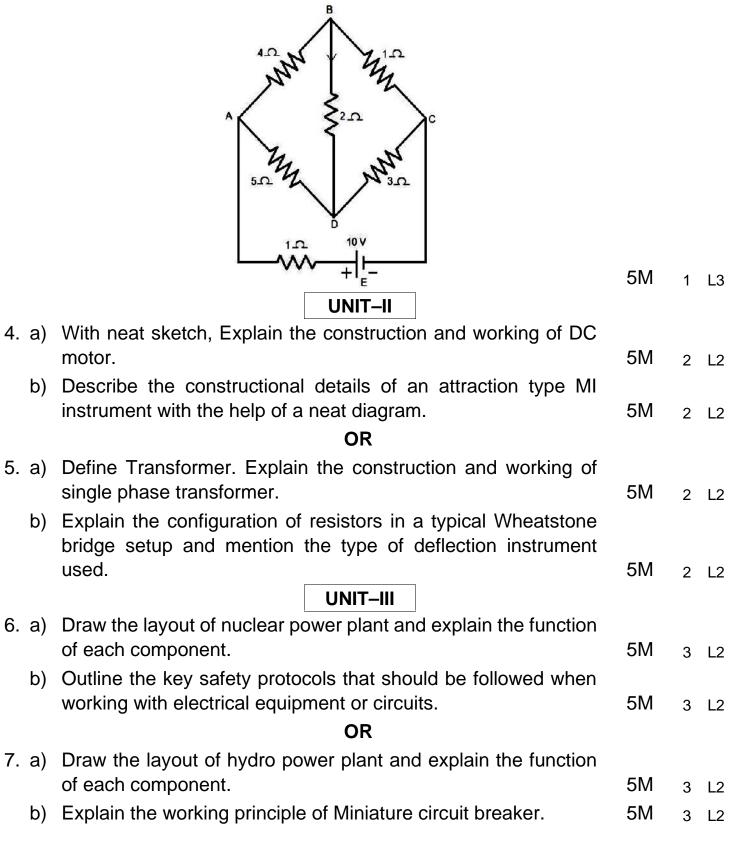
7. Expand \log_{e}^{x} in powers of (x-1) and hence evaluate $\log_{e}^{1.1}$ correct to 4 decimal places. 10M CO3 L3

UNIT-IV

8. If
$$u = x^2 - y^2$$
, $v = 2xy_{\text{and}} x = r \cos_u$, $y = r \sin_u$, find $\frac{\partial(u, v)}{\partial(r, u)}$. 10M CO4 L3

9. If $u = log(x^3 + y^3 + z^3 - 3xyz)$ then show that $(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z})_z u = -\frac{-9}{(x+y+z)^2}$ **UNIT-V** 10. Change the order of integration in $I = \int_{0}^{1} \int_{0}^{2-x} xy dx dy$ and hence evaluate the same.

10M CO5 L3


OR

11. Evaluate, by changing to spherical polar coordinates

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$$
10M CO5 L4
*** End ***

		1 1								1					
	Hall Ticket Number :										[
С	ode: 23A0211T											R-23			
_	B.Tech. I	Semest	er R	egular	Exan	nina	ition	is Ja	nuc	ary 2	2024				
	Bas	ic Elect	rico	al & Ele	ctro	nics	s Eng	gine	eri	ng					
		Commor	n to I	EEE, ECE	e, Al8	DS o	and	CSE	(AI))						
N	1ax. Marks: 70			****	****						Tin	ne: 3 H	our	S	
N	ote: 1. Question Paper	r consists	of tv	vo parts	(Part	- 1 an	nd Pa	rt-2)							
	2. Use separate A	nswer bo	oklet	s for Pa	rt-1 a	nd P	art-2	2							
	3. Part-1 & Part-2	of questi	on p	aper cor	sists	of Pa	art-A	& Pa	art-B						
	4. In Part-A, each	•													
	5. Answer ALL the	•						_							
		PART-	1 (Ba	<u>sic Elect</u> PAR		Engir	neeri	ing)							
			(Co	mpulsor		estio	n)								
	1. Answer all the fe	ollowing	•	•	• •		•	S	(5	X 1	l = 5N	1)	со		BL
	a) State the limi								·				1		L2
	b) Define power	r factor i	na	AC circ	uit.								1		L1
	c) What is the p					e in	a tra	ansf	orm	er?			2		L2
	d) List out some	=		-									3		L2
	e) Explain the fu					Ŭ	,						3		L2
				PAR											
	Answer five question	is by cho	osin	g one qu	estic	n fro	om e	ach	unit	(3 x	10 = 3	0 Mark	s)		
												Mark	s C	0	BL
				UNI	T–I										
2. a)	State and Explain	n Kirchh	off I	_aws w	ith e	xan	nple	s.				5N	1	1	L1
b)	The voltage and	current	thro	ugh cir	cuit	elen	nen	ts a	re						
	v = 100 sir	n (314 t	+ 45	5°) volts	6										
	i = 10 sin (314 t +	315	°) amp	eres										
	(i) Identify the	circuit e	elem	ents.	(ii) l	Find	l th	e v	alue	e o	f the				
	elements. (iii) Ol	otain an	exp	ressio	n for	pov	ver.					5N	1	1	L3
				O	R										
3. a)	An instantaneous	s voltag	e of	v(t)=25	50sir	า(wt	-20)V i	is a	ppli	ed to				
	the system. The	-				-		-	-						
	i(t)=20sin(wt+40°)A. Find	the	e follow	ing p	bara	met	ters		•	•				
	i. Active Power			e Powe	• •				Po	wer	and				
	iv. Power factor of					··· · ·	- 					5M	1	1	L3
		51 the 5y	5.01									010	•	1	LJ

 b) In the circuit shown, determine the current through the 20hm resistor and the total current delivered by the battery. Use Kirchhoff's laws

Code: 23A0211T (Part-2) I B.Tech. I Semester Regular Examinations January 2024 **Basic Electrical & Electronics Engineering** (Common to EEE, ECE, AI&DS and CSE(AI)) PART-2(Basic Electronics Engineering) **PART-A** (Compulsory question) 1. Answer **all** the following short answer questions (5 X 1 = 5M)CO BL a) Draw the V-I Characteristics of PN junction diode. 1 1 b) Draw the circuit diagram of a PNP junction transistor in CE configuration. 1 1 c) Draw the h-parameter model of basic transistor. 2 2 d) Draw the structure of D-Flip Flop and write its truth table 3 2 e) Convert the binary code $(1011011)_2$ into decimal equivalent. 3 3 PART-B Answer five questions by choosing one question from each unit (3 x 10 = 30 Marks) Marks CO BL UNIT-I 2. Discuss the V-I characteristics of PN Junction diode and explain its various biasing techniques. 10M 1 2 OR Explain the operation of CE Configuration of BJT and its input 3. a) and output characteristics briefly 8M 1 1 b) Classify the various configurations of a transistor 2M 1 2 UNIT-II Sketch the block diagram of Public Addressing System and 4. a) explain its operation 5M 2 2 b) Explain working of RC coupled common emitter amplifier and draw its frequency response. 5M 2 2 OR How is Zener diode used as voltage regulator? Explain the 5. a) working principle of zener voltage regulator 5M 2 1 With a neat circuit diagram and necessary wave forms explain b) the operation of half wave rectifier. 5M 2 2 UNIT-III 6. Describe the working of JK flip flop with help of its truth table 10M 3 2

OR

7. a) Why a NAND and NOR gates are known as universal gates?
Verify their truth tables.
b) Draw and Explain the operation of Half and Full Adder
5M 3 3

Hall Ticket Number :			
Code: 23AHS15T	R-23	6	
B.Tech. I Semester Regular Examinations January 2024	1		
Engineering Physics			
(Common to EEE, ECE, CSE(AI) and AI&DS)	T		
Max. Marks: 70 ********	Time: 3	Hours	
Note: 1. Question Paper consists of two parts (Part-A and Part-B)			
2. In Part-A, each question carries Two marks.			
3. Answer ALL the questions in Part-A and Part-B			
<u>PART-A</u> (Compulsory question)			
Answer all the following short answer questions $(10 \times 2 = 20 \text{ M})$)	со	В
) Define interference of light.	/	CO1	L
 Differentiate between Fresnel and Fraunhofer diffraction. 		CO1	L
c) Define Space lattice and Basis.		CO2	
 Write the coordination number and packing fraction of Simple 	e cubic		L
structure.		, CO2	L
 Express the relation between electric vectors E, D and P. 		CO3	
 Define magnetic susceptibility and permeability. 		CO3	
) Define Heisenberg's uncertainty principle.		CO3	
) List any two demerits of classical free electron theory.		CO4	
i) Illustrate the energy band diagrams of conductors, insulate	ore and		L
semiconductors.		CO5	L
i) List two applications of Hall effect.		CO5	
PART-B		005	
Answer <i>five</i> questions by choosing one question from each unit (5 x 10 =	= 50 Mar	ks)	
	Marks	CO	BL
UNIT-I			
a) Explain the interference in thin films by reflection.	7M	CO1	L2
b) Newton rings are observed in reflected light of wavelength			
5900A ^o . The diameter of 10 th dark ring is 0.5cm. Assess		_	
the radius of curvature of lens used.	31/1	CO1	L
OR			
3. a) Evaluate the resultant intensity equation in case of			
Fraunhofer diffraction due to single slit.		CO1	Ľ
b) Describe the working of Nicol's prism with a neat diagram.	5M	CO1	L2

		UNIT-II			
4.		Define packing fraction and evaluate packing fraction of			
		SC and BCC structures.	10M	CO2	L5
-		OR CR			
5.		Explain the crystal structure determination by Laue's method with a neat diagram.	1014	CO2	
			TON	002	L2
6.	a)	Deduce the expression for electronic polarizability.	7M	CO3	L5
	b)	The dielectric constant of He gas at NTP is 1.0000684.			
		Calculate the electronic polarizability of He atoms if the			
		gas contains 2.7×10^{25} atoms /m ³ .	3M	CO3	L3
		OR			
7.	a)	Qualitatively explain Weiss theory of ferromagnetism and	714		
	b)	draw the hysteresis loop.	/ IVI	CO3	L4
	D)	The magnetic field intensity in a piece of ferric oxide is 10^6 amp/m. If the susceptibility of the material is 1.5×10^{-3} ,			
		calculate the magnetization of the material.	3M	CO3	L3
		UNIT-IV			
8.		Give the significance of wave function and determine			L2,
		Schrodinger time independent wave equation.	10M	CO4	L3
		OR			
9.		Determine the expression for electrical conductivity based	4014		
		on quantum free electron theory.	TOM	CO4	L3
10.		Derive an expression for density of electrons in intrinsic			
		semiconductor.	10M	CO5	L6
		OR			
11.	a)	Discuss drift and diffusion currents.	4M	CO5	L2
	b)	Derive Hall co-efficient in hall effect	6M	CO5	L3
		*** End ***			