Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 1G112

R-11 / R-13

B.Tech. I Year Supplementary Examinations December 2017 C Programming and Introduction to Data Structures

(Common to CE, EEE, ME & ECE)

Max. Marks: 70

Answer any **five** questions

Time: 3 Hours

All Questions carry equal marks (14 Marks each)

- 1. a) Explain the history of programming languages.
 - b) Write the algorithm for finding maximum of three numbers
- 2. a) Explain the steps involved in creating and executing the c program.
 - b) Give the structure of c program.
- 3. a) What is an array? What are the advantages of arrays over ordinary variables?
 - b) Write a program to store marks of 100 students in an array and find the average marks of 100 students using array.
- 4. List and explain various string handling functions in C.
- 5. What is Structure? How to pass the member of a structure to a function as an argument. Give an example?
- 6. Write a C program to read name and marks of N number of students from user and store them in a file.
- 7. Write a C program implementing queue using dynamic implementation?
- 8. Define Searching and discuss in details different types of searching techniques with an example.

• • • • • • • •				<u></u>		R-11 / R-13	5
Hall Ticket Number :						Γ	

Code: 1G512

B.Tech. I Year Supplementary Examinations December 2017

Engineering Graphics

(Common to CE & ME)

Max. Marks: 70

Time: 3 Hours

14M

Answer any **five** questions All Questions carry equal marks (**14 Marks each**)

- 1. A wheel of 60mm diameter, rolls downwards on a vertical wall for half revolution and then on the horizontal floor for the remaining half revolution without slipping. Draw the locus of a point on the circumference of the wheel, the initial position of which is the contact point with the wall. Name the curve.
- A line AB 90mm is inclined at 30^o to the H.P. its end A is 12mm above the H.P. and 20mm in front of V.P. its front view measures 65mm draw top view of AB and determine its inclination with the V.P.
- Draw the projections of a regular hexagon of 25mm side, having one of its sides in the H.P. and inclined at 60° to the V.P. And its surface making an angle of 45° with the H.P.
 14M
- Draw the projection of a pentagonal prism, base 25mm side and axis 50mm long, resting on one its rectangular faces on the H.P. with the axis inclined at 45° to V.P.
 14M
- A cone of base 50mm diameter and 60mm axis is resting on its base on the H.P. A section plane perpendicular to V.P. And inclined at 45° to H.P. bisects the axis of the cone. Draw the development of its lateral surfaces.
- 6. Figure: 1 shows the Isometric view of the object. Draw the front view, Top view, and side view

- 7. A Right circular cylinder of diameter 60 mm and height 90 mm, resting on its base in the HP. It is completely penetrated by another cylinder of diameter 45 mm and 90 mm long, such a way that their axes bisect each other at right angles and parallel to VP. Draw their projections showing curves of intersection.
- 8. Draw the perspective view of a cube of 25 mm edge, resting on ground plane on one of its faces. It has one of its vertical edges in the picture plane and all its vertical faces are equally inclined to the picture plane. The station point is 55 mm in front of the picture plane, 40 mm above the ground plane and is in a central plane 9 mm to the left of the Centre of the cube.

14M

14M

14M

Hall Ticket Number :							
Code: 1G511							R-11 / R-13
	'ear Si	upplei	mentar	y Exami	inatio	ons Dea	cember 2017
		Eng	ineerin	g Mecl	hani	CS	
		((Commor	n to CE 8	k ME)	
Max. Marks: 70		•					Time: 3 Hours
		Ar	nswer any	/ five que	estions	5	
	All Que	estions c	carry equ	al marks	(14 ۸	Aarks ea	ch)
1. a) Find the resultant	of copla	anar cor	ncurrent fo	orces actir	ng at t	he point a	as shown in Figure.
			>	Í			
		F2=	200N	30°	_Fi =1 _χ	50N	

b) A roller of weight W=1000N rests on a smooth inclined plane. It is kept from rolling down the plane by a string AC. Find the tension in the string and reaction at the point of contact D.

F4 =180 N

B

2.. a) A beam supports a distributed load as shown in Fig. Determine the reactions at the supports.

b) A uniform beam AB of weight W=100N rests on two roller supports C and D as shown. If a force of 250N is applied to the end B, find the range of the values of force F for which beam will remain in equilibrium.

3. For the frame loaded and supported as shown in Fig. Find the axial force in the members BD, AB and ED.

7M

7M

7M

7M

4. Two blocks A and B are resting against a wall and the floor as shown in Fig. Find the value of the horizontal force P applied to the lower block that will hold the system in equilibrium. Coefficient of friction are: 0.25 at the floor, 0.3 at the wall and 0.2 between the blocks.

5. Determine the coordinates of the centroid of the shaded area formed by the intersection of a straight line and a parabola as shown in Fig. The equation of the parabola is given by $y=x^2/a$ and of straight line by y=x.

- 6. Derive the mass moment of inertia of sphere about its geometrical axis.
- 7. Motion of a particle is given by the equation $x=t^3 3t^2 9t + 12$. Determine the time, position and acceleration of the particle when its velocity becomes zero. 14M
- 8. Mass $M_A=25$ Kg rests on a smooth inclined plane of angle 45° . It is connected to another mass $M_B=50$ Kg by a string as shown in Fig. If the two masses are released from rest, determine their velocities after the mass M_B descends a distance of 0.5m.

14M

14M

14M 14M

Ha	all ⁻	Ticket Number :													_
<u> </u>	da	: 1GC13								<u> </u>				R-11 / R-13	
CO	ae	B.Tech. I Ye	ar S	upr	blen	hent	tarv	Exc	ımin	atic	ons [Dec	emb	oer 2017	
							-		hem						
				(Cor	nmc	on to	All I	Bran	che	s)				
Μ	ax	. Marks: 70			Ans	wer	anv	five (quest	tions				Time: 3 Hours	\$
		AI	l Que	estio					•			eac	h)		
1. a	a)	How are the temp	orary	/ har	dnes	s and	l perr	nane	nt ha	rdne	ss of	wate	er det	ermined?	7M
k	o)	What is desalinat diagram explain d								ilable	e for	desa	alinati	ion. With a neat	7M
2. a	a)	a) Explain acid-base titration conduct metrically.									7M				
k	b) Explain the construction and working of H_2 - O_2 fuel cells. 7									7M					
3. a	a)	Explain the mecha	anisn	n of c	chem	ical a	and e	lectro	ochen	nical	corro	osion			7M
k	c)	What is sacrificial	anoo	de? N	/lenti	on its	role	in th	e pre	venti	on of	corre	osion		7M
4. a	a)	Describe the free	radic	al m	echa	nism	of ac	ditio	n poly	ymer	izatic	on wit	has	uitable example.	7M
k	c)	Describe the prep (i) Bakelite,	arati	on, p	rope	rties	and ι	ises	of foll	owin	g pol	ymer	S.		
		(ii) Teflon.													7M
5. a	a)	Explain the classi	ficatio	on of	expl	osive									
		(i) Primary or		•	•										
	-)	(ii) Low explo		-	-										7M
Ľ))	Explain the follow (i) Flash and	• ·	•		ofiuc	oricar	its.							
		(ii) Cloud and		-											7M
6. a	a)	What is phase rul	e? E	xplaiı	n the	vario	ous te	erms	involv	/ed ir	h it.				6M
k	c)	With a neat diagra	am e	xplaiı	n lead	d- silv	/er sy	/sten	۱.						8M
7. a	a)	Describe the Otto	-Hoff	man	meth	nod o	f cok	e ma	nufac	ture	and	the re	ecove	ery of various by	
		product.													7M
k	c)	Explain Orsat me	thod	of flu	e ga	s ana	lysis								7M
8. a	a)	Write notes on													
		(i) White cerr (ii) Water prod		mant											8M
ł	c)	What are the chai				000	d refi	acto	∿? W	/rite :	a not	e on (carbo	prundum.	6M
ĸ	-,		2010		5 51 6	. 900	a . on	2010	<i>.</i>		2 1100	0.011			0.01

Hall Ticket Number :						

Code: 1GC12

R-11 / R-13

B.Tech. I Year Supplementary Examinations December 2017

Engineering Physics

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours Answer any **five** questions All Questions carry equal marks (14 Marks each) ******* 1. a) Explain interference in thin films by reflected light. 3M b) Explain an experimental method of determination of wavelength of spectral lines of a given source of monochromatic light using plane diffraction grating. 7M c) Explain construction and working of a Nicol prism with neat diagram. 4M 2. a) What are Miller Indices? Explain the steps involved in calculation of it with an 4M example. b) With a neat sketch, explain the Powder method to determine the crystal structure. 6M c) Derive an expression for interplanar spacing in orthogonal system. 4M 3. a) Derive time-independent Schrodinger's wave equation. 6M b) Give the classification of solids into conductors, semiconductors and insulators on the basis of band theory of solids. 4M c) An electron is bound in one-dimensional box of size 4 X 10⁻¹⁰ m. Find the minimum energy, second and third existed states? 4M 4. a) Explain how a PN junction diode acts as a Light Emitting Diode. 4M b) What is Hall effect? Derive an expression for Hall coefficient for n-type semiconductor. Mention its applications. 7M c) Differentiate direct and indirect band gap semiconductors with examples. 3M 5. a) What are soft and hard magnetic materials? Give their characteristic properties and applications. 4M b) Describe Lorentz method to calculate the local field in dielectrics. 7M c) Write short note on Ferroelectric materials. 3M 6. a) What are Type-I and Type-II superconductors? Explain. 4M b) With neat diagrams, describe the construction and working of Ruby laser. 6M c) Mention applications LASERS in industry and Medical field. 4M 7. a) Derive the expression for acceptance angle and Numerical Aperture of an **Optical fibre** 5M b) Derive the expression for acceptance angle and Numerical Aperture of an **Optical fibre** 5M c) Draw the block diagram of optical fibre communication system and explain the function of each block. 4M 8. a) In detail explain one of the method of fabrication of Nanomaterials. 5M b) Discuss about surface to volume ratio and quantum confinement. 4M c) Mention applications of carbon nanotubes and nanomaterials. 5M

Hall Tic	ket Number :												[
Code: 1	IGC14	1		1		1	1		1	1	1	L	R-11 / R	·13
	B.Tech. I Ye	ar S			Ma	ther	nati	ics-	I		Dec	eml	ber 2017	
Max. N	Aarks: 70		(Con Ans		n to any f				-			Time: 3 H	lours
	AI	l Que	estio	ns co	arry e	equa	l ma ****	rks (14 M	\arks	eac	h)		
1. a)	Solve $\cos^2 x \frac{d}{dx}$	$\frac{y}{x} + y$	= ta	n <i>x</i>										4M
b)	Find the orthog <i>a</i> is the param	-	l traj	ector	ies o	f the	fami	ly of	card	ioids	r = 1	a (1 –	cos,,) where	5M
c)	A body origina of the air bei minutes from t	ng 40	$O^{0}C$.	Wha									•	5M
2. a)	Solve $\frac{d^2 y}{dx^2} - 6\frac{d^2 y}{dx^2}$	$\frac{dy}{dx} + 9$	9 y =	$6e^{3x}$	+7e [*]	-2x - 2x	log 2							7M
b)	Solve by the m	netho	od of	varia	ition	of pa	irame	eters	$\frac{d^2 y}{dx^2}$	/ -+ y	= <i>Co</i>	sec x	;	7M
3. a)	Verify Rolle's	Theo	rem	for <i>f</i>	f(x)	= x(x)	c + 3)	$e^{-\frac{x}{2}}$	in [-	3, 0]				7M
b)	Find the maxir	num	and	minir	num	valu	es of	$x^{3} +$	$3xy^2$	² –15	x^2 –	$15y^2$	+72x.	7M
4. a)	Trace the curv	y^2 y ²	(<i>a</i> –	x) =	$x^2(a$	+ <i>x</i>)								7M
b)	The part of the rectum (ii) about	•				•						.,		7M
5. a)	Change the or	der c	of inte	egrat	ion iı	\int_{0}^{4a}	$\int_{x^2/4a}^{2\sqrt{ax}}$	dydz	r an	d her	nce e	evalu	ate.	7M
b)	Evaluate $\int_0^a \int_0^x$	$\int_0^{x+y} e^{-\frac{y}{2}} e^{-$	e ^{x+y+}	^z dzd	ydx									7M
6. a)	Find the Lapla	ce tra	ansfo	orm c	of $f($	t) = t	t - 1 -	t+t	1 , t	≥0				7M
b)	Find the invers	se La	plac	e trai	nsfor	m of	$\frac{2s}{4s^2}$	$\frac{-5}{+25}$	$+\frac{4s}{9}$	$\frac{-18}{-s^2}$				7M
7.	Solve the diffe	erenti	ial e	quatio	on y	^{,11} + :	y=t,	y((0) = 1	l, y	¹ (0) =	=2 u	using Laplace	14M
8.	Verify Stokes upper half of th													14M