Hall 7	Ficke	et Number :	
Code	e: 40	R-14	
	В	Tech. I Year Supplementary Examinations December 2017 Programming in C and Introduction to Data Structures (Common to CE, EEE, ME and ECE)	
-		arks: 70 Time: 3 Ho all five units by choosing one question from each unit (5 x 14 = 70 Mark *********	
1.	a)	Define computer system and explain different components in brief.	71
	b)	What is meant by a computer language? Explain briefly about the computer languages used over the years	71
		OR	
2.	a)	Mention the steps involved in Creating and Running the Program? Explain each step in detail.	71
	b)	Describe standard C input and output functions with suitable C program. UNIT-II	71
3.	a)	Explain the switch case control structure in C with syntax and flow chart.	7
	b)	Develop and implement an algorithm for reversing the digits of an integer.	7
		OR	
4.	a)	How do you declare a one dimensional array? Give its memory representation	7
	b)	Describe the purpose of break and continue statements in C	7
		UNIT–III	
5.	a)	Define Pointer. List the features of Pointers	7
	b)	List and explain the storage classes in C	7
•	,	OR	
6.	a)	What do you mean by functions? Give the structure of the functions and explain about the arguments and their return values.	7
	b)	Discuss passing pointer to a function with example	' 7
	5)		
7.	a)	Write a program in C to search for an element using linear search technique	7
	b)	What is a structure? Explain how to declare, initialize and access the structure elements.	7
		OR	
8.		Explain about any two sorting techniques with example.	14
		UNIT–V	
9.	a)	Write a program in C to convert given infix expression to postfix expression	7
	b)	Define Stack. Explain the push and pop operation of Stack OR	7
10.		Define queue and write the applications of queue. Explain the insert and delete operation of queue	14

Hall 7	Ficke	et Number :												Г			1
Code	e: 4 G	GC13	_[L		. <u>]</u>]						R- 1	4	
		B.Tech. I Y	′ear (Sup	-			-				5 De	ecem	ber	2017		
						-		-	Che Il Brc		-						
-		arks: 70									-				Time: (-
Ans	swei	r all five uni	ts by	chc	oosir	ng oi		Ues *****		from	ead	ch u	nit (5	x 14	. = 70 M	Marks)
								UNI	Γ—Ι								
1.	a)	What is the of water by	•	•			titra	tion?	' Brie	fly de	escrit	be th	e estir	nate	of hard	dness	10M
	b)	What are th					reak	-poin	t chlo	orinat	tion?						4M
	2)	i i i ai ai ai ai ai ai ai		carre	.900	0. 5	oun	•	OR								
2.	a)	Explain the	boile	r tro	uble	s, sca	ale a	ind c	austi	c em	brittle	emer	nt in de	etails			8M
	b)	Why is calg	gon co	ondit	ionir	ng be	tter t	han	phos	phate	e cor	nditio	ning?				6M
								UNIT									
3.	a)	How is NIC			•				plain	with	cell	react	ion.				7M
	b)	Write a brie	ef note	e on	H ₂ -C	D₂ fu€	el ce		OR								7M
4.	a)	Discuss the	mec	hani	sm (of che	emic		-	ctroc	hem	ical (orrosi	ion			7M
ч.	b)	Write a brie											5011031	011.			7M
	2)				outri	cure	·	UNIT]							
5.	a)	What is syr	nthetic	rub	ber?	' Is v	ulcar	nizati	ion e	ssent	tial fo	or all	synthe	etic r	ubbers	?	7M
	b)	Distinguish	therm	nopla	astic	s and	d the	rmos	settin	g pla	stics	•					7M
									OR								
6.	a)	Discuss the	• •			• •											7M
	b)	What are polymers w			• •	•		Dis	cuss	pos	sible	cat	egorie	s of	condu	ucting	7M
								UN	IIT–I\	/							
7.	a)	Calculate	0											0		0	
		composition ash = 4 %,					-	-			Sulp	hur =	= 1 %,	nitro	ogen =	2 %,	6M
	b)	Describe th							•		anufa	actur	e and	the	recove	ery of	
	-	various by	produ	ct.												-	8M
0		What is a m	athatia	not	r ol0	Llou	ia it		OR	urad	ь , , D	oraiı			r		714
8.	a) b)	What is syr With a nea		•							•	Ũ	•			a and	7M
	D)	mention the	-	-					•		•			α αρ	paratus	s anu	8M
									UNI	T–V							
9.	a)	Explain the process du								xing	of th	e ra	w mat	erials	s by th	e dry	7M
	b)	What are I	-							pallir	na s	trenc	oth and	d po	rosity (of the	7 101
	2)	refractories				Елри		non		pain	ig, c		gen an	a po			7M
									OR								
10.	a)	Write short (i) Clou					/ing	prop	erties	s of lu	Ibrica	ants:					
		(i) Cloc (ii) Fla:			•												7M
	b)	Explain the			•		plos	ive.									
	,	(i) Prim					•										
		(ii) Low	explo	osive	es or	prop	ellar										7M
								***								_	

Hall T	icke	et Number :												[]
Code	: 4G	512												R-14	
		B.Tech. I Ye	ear S	• •								ece	embei	r 2017	
Engineering Graphics (Common to CE & ME)															
Max.	Мо	ırks: 70			(C	omr	non		ĒĞ					Time: 3 Ho	ours
А	nsw	er all five uni	ts by	chc	osing	g on			n fro	m ec	ach i	unit (5 x 14	= 70 Marks)	
******** UNIT–I															
 a) Draw a parabola when the distance between its focus and directrix is 50mm. Also draw a tangent and a normal at a point 70mm from the directrix. 									7M						
	b)	Two pegs a	re fix	ed o	nav	vall a	are 4.	5 me	eters	apar	t. Th	e dis	tance l	between the	
				•								•		eters above	
		the floor, fir joining the t			•			conc	d floo	or an	d the	e inc	linatior	n of the line	7M
		joining the t	wo p	cy3,	WILLI		1001	OF	•						7 101
2	2)	Incoribo allir			oroll	ماممه				100.1	E0	~ ~ ~	d 100m		
2.	a)	an included				-	am r	avin	g sic	ies 1:	SOM	n an		nm long and	8M
	b)	The end A of V.P. and 50 mm. Draw the second)mm	abov	ve H	.P. T	he d	listar	ce b	oetwe	en tl	ne er	nd proj	d B is in the ectors is 75	6M
								UNI	[]]						
3.		The top view front view is Draw the pro-	s 50r	nm.	lt's c	one e	end A	is i	n the	e H.P	anc	l 12n	nm in f		14M
								OF	2						
4.	a)	A semicircu inclined at 3 Draw the pr	30º to	H.P	, wh	ile th	e su					0	•	on V.P and t 45º to V.P.	7M
	b)		king	an a	angle	of	30 ⁰	with	the	VP a	and t	he s	et squ	est side is in are itself is	7M
		inclined at 4	.5* 10	uie		Jiaw						301 3	quale		7 101
5.		A pentagon	al pv	rami	d. w	ith si				5mm	and	50m	m lonc	axis has a	
triangular face on V.P and the edge of the base contained by that face is inclined at 30° to H.P. Draw the projections.									14M						
								OF	2						
6. A Right regular hexagonal Pyramid, edge of base 25mm and height 55mm, rests on its base on HP with one of the base edges parallel to VP. A sectional plane perpendicular to VP and inclined to HP at 30o, cuts the pyramid and passes through the Centre of its axis. Draw its front view, sectional top view										14M					

UNIT–IV

 A cone of base 50mm diameter and 60mm long, is resting on its base on H.P. Section plane perpendicular V.P, cuts the cone at a distance of 10 from the axis. Draw the development of the cut solid.

OR

- 8. A Square prism, edge of the base 30 mm and height 60 mm, resting on its base in the HP. It is completely penetrated by another square prism, edge of base 20 mm and 70 mm long, such that the axes of the two prisms bisect each other at right angles and the faces of both the prisms are equally inclined to VP. Draw the projections of solids showing lines of intersection
- 14M

14M

- UNIT-V
- 9. Figure:1 shows the orthographic projections of a Solid. Draw the Isometric view of the given solid.

14M

OR

 Draw the following views of the object shown pictorially: (i) Front view. (ii) Top view. (iii) Side view. Fig – 2

Hall Ticket Number :								[
	1			1	 1	1	1	R-14

Code: 4G511

I B.Tech. I Year Supplementary Examinations December 2017

Engineering Mechanics

(Common to CE & ME)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

1. a) Two equal loads of 2500N are supported by a flexible string ABCD at points B and C. Find the tensions in the portions AB, BC and CD of the string.

b) A simply supported beam carries a distributed load as shown in Fig. Find the reactions at the supports.

2 Determine the magnitude and direction of the smallest force P required to start the wheel over the block as shown in Fig.

14M

7M

UNIT–II

3. Using the method of joints, find the axial forces in all the members of a truss with the loading as shown in Fig.

14M

OR

4. A truss is loaded and supported as shown in Fig. Find the axial forces in the member BD, CD and CE.

UNIT-III

5. A block of weight W₁=1000N rests on a horizontal surface and supports on its top another block of weight W₂=250N. The weight W₂ is attached by an inclined string to the vertical wall. Find the magnitude of the horizontal force P applied to the lower block to cause slipping to impend. The coefficient of friction for all contacting surfaces is 0.3.

6. A uniform ladder AB of length l=20m and weight W is supported by the horizontal floor at A and by a vertical wall at B. It makes an angle 45^o with the horizontal. If a man, whose weight is one-half that of the ladder, ascends the ladder, how much length X of the ladder he shall climb before the ladder slips.

14M

UNIT–IV

7. Determine the moment of inertia of the area of T-section as shown in Fig. with respect to centroidal X-axis and Y-axis.

8 a) Determine the coordinates of the centroid of the shaded area as shown in Fig.

7M

7M

b) Derive the mass moment of inertia of thin disk about its centroidal axis.

UNIT-V

- 9. a) A motorist is travelling on a curved road of radius 20m at a speed of 72Km/hour. Find the normal and tangential components of acceleration.
 - b) Three blocks A, B and C are connected as shown in Fig. Find the acceleration of the masses and the tension T_1 and T_2 in the strings. Given $\mu_1=0.2$ and $\mu_2=0.25$.

10M

4M

OR

10 A block of mass 5Kg resting on a 30^o inclined plane is released. The block after travelling a distance of 0.5m along the inclined plane hits a spring of stiffness 15N/cm as shown in Fig. Find the maximum compression of spring. Assume the coefficient of friction between the block and the inclined plane as 0.2.

Hall T	Ficke	et Number :	
Code	e: 40	GC12 R-14	
	В	.Tech. I Year Supplementary Examinations December 2017	
		Engineering Physics	
Max		rks: 70 (Common to All Branches) Time: 3 Hou	Irc
	-	all five units by choosing one question from each unit (5 x 14 = 70 Marks	
		******** UNIT–I	
1.	a)	Explain Newton's rings experiment by reflection to calculate the wavelength	
		of a monochromatic light.	5
	b)	Derive Einstein's coefficients in LASERS.	5
	c)	Write the applications of optical fibers in industries and in medical field.	4
		OR	
2.	a)	Give the theory of Fraunhoffer diffraction due to single slit.	5
	b)	Explain population inversion. Mention important applications of LASERS	4
	c)	Derive the expression for acceptance angle and Numerical Aperture of an Optical fiber.	5
		UNIT–II	
3.	a)	Derive an expression for inter-planar spacing in cubic system.	5
	b)	Define Miller Indices and mention the steps involved. Sketch (110) & (001) the planes in a cube.	5
	c)	Define point defects? Explain different types of point defects.	4
		OR	
4.	a)	Describe with suitable diagram the Laue method of X-ray diffraction and give the consequences	5
	b)	Explain different types of line defects. How the burger's vector is used to find the edge and screw dislocations?	5
	c)	Write note on production of ultrasonics by piezoelectric method.	4
		UNIT–III	
5.	a)	What are matter waves? Explain their properties.	4
	b)	Show that the energies of a particle in 1-D potential box are quantized. Explain the physical significance of wave function.	7
	c)	Calculate the de Broglie wavelength associated with an electron when it is raised to a potential of 1600 V.	3
		OR	
6.	a)	What are drawbacks of classical free electron theory of metals? How are these are removed by the application of quantum states?	5
	b)	Show that the Kronig - Penney model leads to existence energy bands in solids.	5
	c)	Give the classification of solids into metals, semiconductors and insulators on the basis of band theory of solids.	4

UNIT–IV

7.	a)	Describe drift and diffussion currents in a semiconductor. Derive their expressions.	6M
	b)	Derive the equation of continuity equation for electrons.	5M
	c)	Draw I-V characteristic curve of a PN junction diode and explain.	3M
		OR	
8.	a)	Explain the origin of magnetic moment in atoms. Find the magnetic dipole moment due to orbital and spin motions of an electron.	5M
	b)	Explain hysteresis of a ferromagnetic materials.	4M
	c)	Explain the classification of magnetic materials.	5M
		UNIT-V	
9.	a)	Explain Meissner effect. Write notes on magnetic levitation.	5M
	b)	Describe BCS theory of superconductivity.	5M
	c)	Write applications of superconductors.	4M
		OR	
10.	a)	Explain the basic principles of nanomaterials.	5M
	b)	Describe the process of "sol-gel" and "chemical vapour deposition" method of fabrication of nanomaterials.	6M
	c)	Write the applications of nanomaterials.	3M

ł	Hall	Ticket Number :	
C	Cod	e: 4GC14	
		B.Tech. I Year Supplementary Examinations December 2017 Mathematics-I (Common to All Branches)	
		Time: 3 Hours nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
۱.	a)	Solve $xy(1+xy^2)\frac{dy}{dx} = 1$	7M
	b)	A body originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the temperature of the air being $40^{\circ}C$. What will be the temperature of the body after 40 minutes from the original? OR	7M
2.	a)	Solve $(D^3 - D)y = 2x + 1 + 4\cos x + 2e^x$	7M
	b)	Using the method of variation of parameters, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$	7M
3.	2)		
5.	a)	Verify Rolle's theorem for $f(x) = (x+2)^3 (x-3)^4$ in (-2,3)	7M
	b)	In a plane triangle, find the maximum value of cosAcosBcosC OR	7M
4.	a)	Verify Lagrange's mean value theorem for $f(x) = (x-1)(x-2)(x-3)$ in (0,4)	7M
	b)	Given $x + y + z = a$, Find the maximum value of $x^m y^n z^p$	7M
		UNIT–III	
5.	a)	Trace the curve $a^2y^2 = x^2(a^2 - x^2)$	7M
	b)	Find the area lying between the parabola $y = 4x - x^2$ and the line $y = x$. OR	7M
6.	a)	Change the order of integration and evaluate $\int_{0}^{a} \int_{x/a}^{\sqrt{x/a}} (x^{2} + y^{2}) dx dy$	7M
	b)	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	7M
7	2)		
7.		Find the Laplace transform of $f(t) = t-1 + t+1 $, $t \ge 0$	7M
	b)	Apply convolution theorem to evaluate $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$ OR	7M
8.		Solve $\frac{d^2x}{dt^2} + 9x = \cos 2t$, if $x(0) = 1$, $x\left(\frac{f}{2}\right) = -1$	14M
		UNIT-V	
9.	a)	Show that $\nabla^2(r^n) = n(n+1) r^{n-2}$	7M
	b)	Evaluate $\int_{S} F \cdot ds$ where $F = 4xI - 2y^{2}J + z^{2}K$ and S is the surface bounding the	7M
		region $x^2 + y^2 = 4$, $z = 0$ and $z = 3$	
0		OR	1 4 4 4
0.		Verify Green's theorem for $\int_C (xy + y^2) dx + x^2 dy$, where C is bounded by $y = x$ and $y = x^2$	14M

Page **1** of **1**