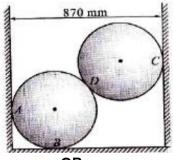
	Ha	II Ticket Number :]			1
L	Сос	de: 5G512		<u> </u>	1	1	_[1	1	1	[1			R-15	
		IB.Tech.ISe	emes	ster	Sup	pler	nen	tary	Exa	min	atio	ns C	Dctok	ber :	2020	
				E	-			g Gr	-		-1					
		ax. Marks: 70			(Co	omr	non	to C	E & I	ME)				т:	me: 3 Hours	
	IVIC	Answer all five un	its by	' cho	osing	g on		estio	n fro	m ec	ich u	unit (5 x 14			
						U	INIT-	I								
		Construct an ellipse	e, whe	en the	e dist	tance	e of tl	ne foo	cus fr	om tl	ne di	rectri	x is eq	ual t	o 60 mm and	
		eccentricity 2/3. Also	o drav	v a no	ormal	and	-		the c	urve	at a p	point	35 mm	from	the focus.	14
	,			:	h			R	0							
2.	a)	Construct a parabol method.	a whe	en its	base	e is e	equai	to 10	umm	and	axis i	s equ	Jai to 6	osmn	n by rectangle	-
	b)	A point P is 30mm	and s	50mm	n resi	pectiv	vely f	rom t	wo si	traigh	t line	s wh	ich are	e at r	ight angles to	
	,	each other. Draw th					-			-					• •	-
							NIT–									
3.		Draw a hypo-cycloid diameter, for one re														
		from the center of th					KW156	. Dia	wal	ange	it and		1111110	ll al a		1.
				0			0	R								
1.	a)	Draw an involute of	a circ	le of	50 m	m dia	amete	er. Als	so, dr	aw a	norm	al ar	id tang	ent a	t any point on	
		the curve.														
	b)	Draw an involute of point 50mm from ce		-		riang	le of	30mr	n side	e. Als	so dra	aw a	norma	l and	tangent at a	
		point Somm nom de		л ша	iyie.		NIT–I	11								
5.	a)	A point P is 15 mm	abov	ve the	e H.P				n fron	t of t	he V	.P. A	nother	poin	t Q is 25 mm	
	,	behind the V.P. and	d 40 r	nm b	elow	the	H.P.	Draw	proje	ection	s of I	o and	d Q ke	eping	g the distance	
		between their proje (ii) their front views.	ectors	equa	al to	90 r	nm. I	Draw	strai	ght li	nes j	oinin	g (i) th	neir to	op views and	
	b)	A point P is 50 mm	from h	ooth t	he re	ferer	nce pl	anes	Drav	v its r	oroiec	tions	in all r	oossil	ble positions	-
	0)						p.		Diai		, ejec		in on p			
ò.		A point at 25 above	the r	efere	nce l	ine x	r y is t	he fro	ont vie	ew of	two	point	s A an	d B. ⁻	The point A is	
		40 behind V.P and												•	ints and state	
		their positions relativ	ve to t	the pl	anes		-		and q	uadra	ints ir	ו whi	ch they	/ lie		14
7 .		A thin rectangular p	late o	of side	n9 24	L	NIT-I		has it	s shr	orter o	side i	n the \	/Pa	and inclined at	
•		30° to the H.P. Proje														14
							0	R								
3.		A rectangle ABCD of														
		sides of the rectang	le are	equa	ally in				nd pa	rallel	to V.I	P. Dr	aw its j	oroje	ctions.	1
).		A line AB 120 mm lo	ona is	inclir	ned a		NIT-Y		300 I	to the	VP	lt's m	hidnoin	t C. is	in VP and 20	
<i>.</i>		mm above HP. The	•													
		the line using the au	uxiliary	y plar	ne me	ethod										1
				_		_		R								
).		An equilateral triang the H.P. its plane n						•								
		method.			angle	014			, v.1	. Dia	** 113	Piole	2010113	by c	annary plane	1
							*	**								

Hall Ticket Number :		[
		R-15

Code: 5G511

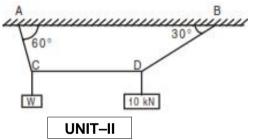
I B.Tech. I Semester Supplementary Examinations October 2020

Engineering Mechanics - Statics

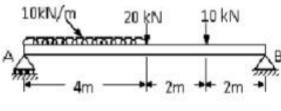

(Common to CE & ME)

Max. Marks: 70

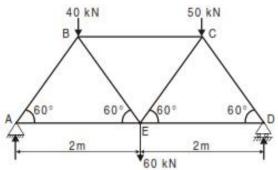
Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)



- 1. a) How do you define the system of forces? Sketch at least three systems of forces.
 - b) Two smooth spheres of weight 100N and radius 250 mm each are in equilibrium each are in equilibrium in a horizontal channel of width 870 mm as shown in the Figure 1. Find the reactions at the surfaces of contact A, B, C, D assuming all surfaces to be smooth.



- 2. State and prove Varignon's theorem. a)
 - A cord supported at A and B carries a load of 10 KN at D and a load of W at C as shown in b) Fig. 3. Find the value of W so that CD remains horizontal.


- 3. Explain various types of loads acting on beams. a)
 - b) A beam AB is located supported and loaded as shown in Figure. Find the reactions at the supports.

8M

4M

- 4. a) Discuss the assumptions made in the analysis of simple truss.
 - Determine the forces in all the members of the truss shown in Fig. and indicate the b) magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m.

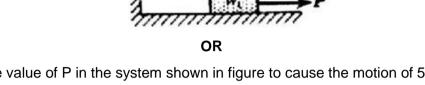
10M

10M

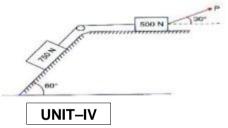
6M

8M

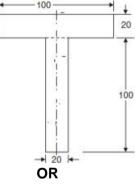
6M

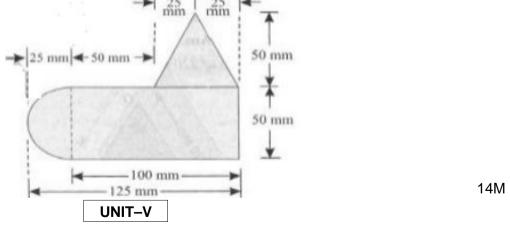

4M

4M


5. a) Define the terms: Friction, limiting force of friction, co-efficient of friction and angle of friction.

UNIT-III


b) A block of weight W1= 200 N rests on a horizontal surface and supports on top of it another block of weight W2= 50 N. The block W2 is attached to a vertical wall by the inclined string AB. Find the magnitude of the horizontal force P, applied to the lower block as shown, that will be necessary to cause slipping to impend. The coefficient of static friction for all contact surfaces is μ=0.3 as shown in figure.


6. What is the value of P in the system shown in figure to cause the motion of 500 N block to the right side? Assume the pulley is smooth and the coefficient of friction between other contact surfaces is 0.20.

- 7. a) Determine centroid of semicircle whose radius is R.
 - b) Locate the centroid of the T-section shown in the Fig.

8. Uniform lamina shown Figure. consists of rectangle, a semi circle and a triangle. Find the center of gravity.

- 9. a) State and prove parallel axis theorem.
 - b) Derive the expression for moment of inertia of a triangle about centroidal axis.

OR

10. Find the mass moment of inertia of a right circular cone of base radius 'R' and mass 'M' about the axis of the cone.

14M

7M

7M

14M

10M

6M

8M

	Cod	de: 5GC14						R-15	
		l B.Tech. I Semester Sup	plement	tary Exc	amino	ations	Octob	oer 2020	
		•	eering A						
	M	(Co ax. Marks: 70	mmon to	All Brar	iches)		Time: 3 Hours	
	1010	Answer all five units by choosin	ig one que	estion fro	om ea	ch unit	(5 x 14		
			****	****					
		<i>d</i> .,	UNIT-I						
•		Solve $x \frac{dy}{dx} + y = x^3 y^6$							1
		ил	0	R					'
2		A body originally at 80° C cools			0 minu	utes, th	e tempe	erature of the air	
		being 40° C. What will be the te	mperature				•		
		and when will be the temperature]					1
,		\mathbf{O} + $(\mathbf{D}^2 + \mathbf{A})$	UNIT–I	l					
3.		Solve $(D^2 + 4)y = x^2 + \cos 2x$		_					1
			0		2		_		
ŀ.		Using the method of variation of p	arameters	, solve (<i>l</i>	$D^{2} + 4)$	y = tan	2x		1
			UNIT–II						
5.	a)	Verify Rolle's theorem for $f(x) =$	$\frac{\sin x}{e^x}$ in $(0, 1)$	f)					
	b)	Expand $\sin x$, by using Maclaurin	C						
	~)		0						
ò.	a)	Verify Lagrange's Mean value the	eorem for <i>f</i>	$f(x) = e^x$	in[0,1]				
	b)	Using Maclaurin's series, expand			L J				
	0)	Coning Machadinino Sonos, expand							
,					$\partial(u.v.v)$	W)			
		If $u = x^2 - 2y, v = x + y + z, w = x - 2y$	-2y + 3z,tr	- nen find	$\frac{\partial(u,v,v)}{\partial(x,y,v)}$	$\frac{z}{z}$			1
			0	R					
3.		Find the maximum and minimum	values of	$x^3 + y^3 -$	3axy				1
			UNIT-\	/					
).		Trace the curve $r = a(1 - \cos r)$							1
			0	R					
).		Trace the curve $x^3 + y^3 = 3axy$							1

Code: 5GC12

I B.Tech. I Semester Supplementary Examinations October 2020

Engineering Chemistry

(Common to CE, ME, CSE & IT)

Max. Marks: 70

Time: 3 Hours

R-15

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

- 1. a) What is hardness of water? Mention its units?
 - b) Describe the desalination process by reverse osmosis with a neat sketch.

OR

- 2. a) Write a note on internal treatment?
 - b) What is break point chlorination? State its significance?

UNIT–II

3. What are fuel cells? Describe the working principle of methanol-oxygen fuel cell with reactions.

OR

- 4. a) What is concentration cell corrosion and galvanic corrosion?
 - b) Calculate the standard emf of Ni-Ag cell whose E^0_{Ni} and E^0_{Ag} are -0.25 and +0.83 respectively also write cell representation.

UNIT–III

- 5. a) Distinguish between thermoplastic and thermosetting polymers.
 - b) Write a note on compounding of rubber?

OR

- 6. a) Describe doped conducting polymers with suitable example.
 - b) Write a note on vulcanization of rubber.

UNIT–IV

- 7. a) Discuss any five characteristics of a good fuel?
 - b) Classify the fuels with examples?

OR

- 8. a) Write a note on production and uses of producer gas, water gas and Bio gas.
 - b) Define knocking? Write about octane number?

UNIT-V

- 9. a) What are lubricants? Write any three properties and applications of lubricants.
 - b) What are refractories? Discuss any three properties of refractories?

OR

10. Explain the mechanism of (i) thin film lubrication, (ii) thick film lubrication

L		Il Ticket Number : R-15
	Coc	le: 5G111 I B.Tech. I Semester Supplementary Examinations October 2020
		Problem Solving Techniques and Introduction to C Programming
		(Common to All Branches)
	Mc	ax. Marks: 70 Time: 3 Hour
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)
		UNIT–I
1.	a)	Give a comparison between system and application softwares with examples.
	b)	Write an algorithm to find the greatest number among the three given numbers.
		OR
2.	a)	Give the block diagram of a computer. Explain functionality of each component.
	b)	Write an algorithm to calculate the roots of a quadratic equation.
		UNIT–II
3.	a)	What is the need of explicit type conversion in C? How to cast the data?
	b)	What is an integer constant, floating constant and character constant? Give valid examples. OR
4.		Explain with examples the different types of operators used in C.
		UNIT–III
5.	a)	In what way a do – while loop differs from while loop. Explain.
	b)	Write a C program to print all the prime numbers between 1 to 100
		OR
6.	a)	How does a switch statement works? List the difference between switch and if else ladde statement.
	b)	Write a program to demonstrate 'goto' statement.
		UNIT–IV
7.	a)	Write a program to print an array in reverse order
	b)	Write a C Program to delete 'n' characters in a given string
		OR
8.	a)	What is an Array? Explain different types of Array with examples.
	b)	What is String? Explain any three string handling functions with examples.
9.	a)	What is the scope of variables of type extern, auto, register and static? Explain with example.
	b)	What is meant by user defined function? Explain with an example C program OR
0.	a)	What is a function? What are its advantages? Explain various parameter passing techniques.
	b)	Write a function that checks whether a given year is leap year or not.
