	Hall	Ticket Number :]
C	Code	r: 5G111 R-15	
		I B.Tech. I Semester Supplementary Examinations December 2022	
	F	roblem Solving Techniques and Introduction to C Programming	
	Max	(Common to All Branches) . Marks: 70 Time: 3 Hours	
	-	ver any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT–I	
1.	a)	Differentiate between computer hardware and software	7M
	b)	Write an algorithm to find product of two integers using repetitive addition	7M
2		OR	714
2.	a)	Explain in detail about the software development method.	7M
	b)	List and explain various symbols used in flowcharts with figures UNIT-II	7M
3.	a)	Discuss about operator precedence in expression evaluation with a suitable	
		example.	7M
	b)	Give the format for conditional operator. When is it used? OR	7M
4.	a)	Explain different data types supported by C language with their memory requirements.	7M
	b)	Describe the structure of a C program with example UNIT-III	7M
5.	a)	Write a C Program to check weather given number is Amstrong number or not	7M
	b)	Explain the significance of 'break' and 'continue' statement with a sample program. OR	7M
6.	a)	Write 'C' program to print the Fibonacci sequence.	7M
	b)	In what way a do – while loop differs from while loop. Explain.	7M
	,		
7.	a)	Write a program to print an array in reverse order	7M
	b)	Write a C Program to delete 'n' characters in a given string	7M
		OR	
8.	a)	What is an Array? How to declare and initialize a one dimensional array?	4M
	b)	Explain different string manipulation functions with example	10M
9.	a)	What is the scope of variables of type extern, auto, register and static? Explain with example.	10M
	b)	What is meant by user defined function? Explain with an example C program OR	4M
10.	a)	What is a function? What are its advantages? Explain various parameter passing techniques.	10M
	b)	Write a function that checks whether a given year is leap year or not.	4M
	,	***	

	Hal	Ticket Number :	
		R-15	
	Coa	e: 5GC14 I B.Tech. I Semester Supplementary Examinations December 2022	I
		Engineering Mathematics-I	
	Ма	(Common to all Branches) x. Marks: 70 Time: 3 Hours	
		wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT-I	
1.	a)	A bacterial culture, growing exponentially, increases from 100 to 400 grams in 10 hours. How much was present after 3 hours	7M
	b)	Find the Orthogonal trajectories of the family of parabolas $y^2 = 4ax$	7M
		OR	
2.		Find the Orthogonal trajectories of the family of curves $r = a(1 + \cos r)$	14M
3.		UNIT–II Using the method of variation of parameters, solve $(D^2 + a^2)y = \sec ax$	
0.		Using the method of variation of parameters, solve $(D + a)y = \sec ax$ OR	14M
4.		Solve $(D^2+4)y = \sin x$	
		Solve $(D^{-}+4)y - \sin x$	14M
		UNIT–III	
5.	a)	Expand $\sin x$, by using Maclaurin's theorem.	7M
	b)	Verify Rolle's Theorem for $f(x) = e^x(\sin x - \cos x)in\left(\frac{f}{4}, \frac{5f}{4}\right)$	7M
		OR	
6.		If $f(x) = \sin^{-1} x, 0 < a < b < 1$, use Mean value theorem to prove that	
		$\frac{b-a}{\sqrt{(1-a^2)}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{(1-b^2)}}$	
		$\sqrt{(1-a^2)} \qquad \qquad \sqrt{(1-b^2)}$	14M
7.		If $u = \sin^{-1}(\frac{x^2 + y^2}{x + y})$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$	4 4 5 4
		OR	14M
8.		Given $x + y + z = a$, find the maximum value of $x^m y^n z^p$	14M
			1-+171
		UNIT-V	
9.		Trace the curve $x = a(x + \sin x)$, $y = a(1 + \cos x)$	14M
		OR	
10.		Trace the curve $r = a(1 - \cos \pi)$	14M
