F	Hall [*]	Ticket Number :					
R-15							
C	Code: 5GC13 I B.Tech. I Semester Supplementary Examinations March 2021						
		Engineering Physics					
		(Common to EEE & ECE)					
Max. Marks: 70 Time: 3 Hours							
	F	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) *********					
4		UNIT-I					
1.		What is interference? With a neat diagram, explain that the diameter of bright Newton's Ring is directly proportional to the square root of the odd number.	14M				
		OR	I T IVI				
2.		What is optical fiber? Discuss briefly principle, construction and working of an					
		optical fiber.	14M				
		UNIT-II					
3.		Show that FCC is most closely packed of the three cubic structures by working out its	4 45 4				
		packing fractions. OR	14M				
4.		What is piezoelectric effect? Draw a neat diagram and explain the piezoelectric					
٦.		generator for production of ultrasonic waves?	14M				
		UNIT-III					
5.		Obtain the expression for energy levels of a particle of mass m which is free to move	4 4 1 4				
		in a region of zero potential between two rigid walls of x=0 and x=L. OR	14M				
6.		Explain the behaviour of an electron moving in a field of periodic potential using Kronig					
0.		and Penny model.	14M				
		UNIT-IV					
7.		Explain with a suitable diagram working of Hall effect and its uses.	14M				
		OR					
8.	a)	Describe with an appropriate diagram working of a P-N junction diode.	7M				
	b)	Elaborate Josephson effects and their applications.	7M				
^	_ \	UNIT-V	78.4				
9.	a)	Derive an equation for magnetic moment of atom.	7M				
	b)	How optical and mechanical properties of nanomaterials varies with their size. OR	7M				
10.		Write a detailed note on nanoscience and nanotechnology.	14M				

Hall Ticket Number :								
Code: 5GC14								
I B.Tech. I Semester Supplementary Examinations March 2021								
1 5,1001111001		ginee		•			0.10	 . 2021
(Common to All)								

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. Find the Orthogonal trajectories of the family of curves $r = a(1 + \cos_{\pi})$

OR

2. Solve $2xy dy - (x^2 + y^2 + 1)dx = 0$

UNIT-II

3. Using the method of variation of parameters, solve $(D^2 + 4)y = \tan 2x$

OR

4. Solve $(D^2 + 4D + 20)y = 23sint - 15cost$.

UNIT-III

5. Verify Rolle's theorem for the function $f(x) = (x - a)^m (x - b)^n$, where m and n are positive integers, in [a, b].

OR

6. Verify Lagrange's Mean value theorem for $f(x) = e^x in[0,1]$

UNIT-IV

7. Find a point on the plane 3x+2y+z-12=0, which is nearest to the origin.

OR

8. If $x = r \cos_{\pi}$, $y = r \sin_{\pi}$, then find $\frac{\partial(x, y)}{\partial(r, \pi)}$.

UNIT-V

9. Trace the curve $y^{2}(a + x) = x^{2}(3a - x)$.

OR

10. Trace the curve $x^3 + y^3 = 3axy$

	Hal	I Ticket Number :						
	Code: 5G111							
		I B.Tech. I Semester Supplementary Examinations March 2021						
		Problem Solving Techniques and Introduction to C Programming (Common to All Branches)						
	Мах	Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I						
1.	a)	Write an algorithm to check the given number is perfect number or not.						
	b)	List and explain various symbols used in flowcharts with figures						
		OR						
2.		Discuss about different computer languages with examples.						
3.		UNIT-II Explain with examples the different types of operators used in C. OR						
4.	a)	Describe the structure of a C program with example						
	b)	Explain about data types in C programming language.						
		UNIT-III						
5.	a)	In what way a do – while loop differs from while loop. Explain.						
	b)	Write a C program to find whether the given number is prime numbers or not.						
		OR						
6.		Explain the syntax of else if ladder and write a C program to read the value of x and evaluate the following function. $Y = \begin{cases} 1 \text{ for } x > 0 \\ 0 \text{ for } x = 0 \\ -1 \text{ for } x < 0 \end{cases}$						
		Using else if statement and nested if statement.						
7.		UNIT-IV Describe creation and initialization of two dimensional arrays and write a C program to						
		perform sum of two matrices.						
		OR						
8.		Define string and explain various string input/output functions with suitable examples.						
9.		UNIT-V What is function? Explain different parameter passing methods in functions with						
		example.						
		OR						

10. a) Explain about static and register storage classes.

b) Write a C program to find factorial of a number using recursion.
