Code: 5G111

Problem Solving Techniques and Introduction to C Programming (Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Give a comparison between system and application software's with examples.
b) List and explain various symbols used in flowcharts with figures 7M

OR
2. a) Discuss about different computer languages with examples.
b) Explain in detail about the software development method.

UNIT-II

3. a) What are bitwise logical operators? Explain about bitwise logical operators with suitable programming example.
b) Evaluate the following expressions:
(i) $a^{*}(3+b) / 2-c++* b$ where $a=3, b=4$ and $c=5$
(ii) ! $\left(4+5^{*} 0>=6-4\right)$
7M

OR

4. a) What is the need of explicit type conversion in C? How to cast the data?

b) What is the need of escape sequence? Write a sample program to illustrate escape
sequences.

UNIT-III

5. a) Give the control flow diagram of the for loop. How is the execution of 'for' loop 7 M
proceeds?
b) Write a C program to find biggest of three integer numbers. 7 M

OR

6. a) Explain counter-controlled and condition-controlled loops with examples.
b) Write a C program to find the sum of first and last digit of a number 7M

UNIT-IV

7. a) What are the different types of arrays in C? Explain with a suitable example, array declaration, initialization and accessing of the elements for these different types.
b) Write a C program to accept 3×3 matrix and display elements of the matrix. 7 M

OR

8. a) Explain any five string manipulation functions with example 10M
b) Write a program to find highest and smallest number in the given array. 4M

UNIT-V

9. a) Write a C program to exchange the value of two integers using call by reference.
b) Write a c program to find factorial of a number using recursive function

OR

10. a) Define scope. Briefly explain the scope, life time and visibility of Identifier. 7M
b) Explain about pre-processor commands with examples.

Code: 5GC14

| B.Tech. I Semester Supplementary Examinations March/April 2023

Engineering Mathematics-I

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

```
*********
```


UNIT-I

1. Solve the differential equation $(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}$

OR

2. Find the Orthogonal trajectories of the family of curves $y=a x$

UNIT-II

3. Using the method of variation of parameters, solve $\left(D^{2}+4\right) y=\tan 2 x$

OR
4. Solve $\left(D^{2}+4\right) y=x^{2}+\cos 2 x$
5. Test of convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+$ \qquad ..∞

OR

6. Test for convergence of the series $\sum \frac{n^{3}}{3^{n}}$

UNIT-IV

7. If $u=x^{2}-2 y, v=x+y+z, w=x-2 y+3 z$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$

OR

8. Find the maximum and minimum values of $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$

UNIT-V

9. Trace the curve $x^{3}+y^{3}=3 a x y$

OR

10. Trace the curve $r=a \sin 3 \theta$

Code: 5GC15

| B.Tech. I Semester Supplementary Examinations March/April 2023

Mathematical Methods-I

(Common to CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve the system of equations $x+y+w=0, y+z=0, x+y+z+w=0, x+y+2 z=0$
b) Reduce the matrix $\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$ to normal form and hence find the rank

OR

2. Find the values of p and q so that the equations $2 x+3 y+5 z=9,7 x+3 y+2 z=8,2 x+3 y+p z=q$ have
(i) No solution
(ii) Unique solution
(iii) An infinite number of solutions.

14M

UNIT-II

3. Find the matrix P which transform the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$ to the diagonal form.

OR

4. Determine the model matrix P of $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3\end{array}\right]$. Verify that $P^{-1} A P$ ia a diagonal matrix.

UNIT-III

5. Reduce the quadratic form $10 x^{2}+2 y^{2}+5 z^{2}-4 y z-10 z x+5 x y$ to the canonical form by linear transformation.

OR

6. Define Hermitian, skew-Hermitian, Unitary Matrices and give example for each

UNIT-IV

7. Using the bisection method, find a real root of the equation $\cos x=x e^{x}$ correct to three decimal places.

OR

8. Find the real root of the equation $x \log _{10} x=1.2$ by Regular-false method correct to four decimal places.

UNIT-V

9. Find $f(2.5)$ using Newton's forward formula from the following table.

x	0	1	2	3	4	5	6
y	0	1	16	81	256	625	1296

10. Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$, by using \quad (i) Weddle's rule (ii) Simpson's $3 / 8^{\text {th }}$ rule.
