\square

Code: 5G111

R-15

I B.Tech. I Semester Supplementary Examinations June 2022

Problem Solving Techniques and C Programming

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
$* * * * * * * * *$

UNIT-I

1. a) Define Computer? Explain hardware and software components of a computer.
b) Write and algorithm and draw a flow chart to calculate percentage of a student in six subjects.

OR

2. a) Explain different types of computer languages in detail.
b) What is Keyword? Write and explain any ten keywords in C programming language.

UNIT-II

3. a) Define operator? Describe different types of operators used in c language with example.
b) What are formatted input and output functions in used in C explain with an example.

OR
4. a) Explain different data types in C programming language.
b) Evaluate the following expression by using rules of precedence and associativity.
i) $4 / 3+5-2+3 / 5$
ii) $3 * 6+9-10 / 6$

UNIT-III

5. a) What is an Array? Explain how to declare and initialize a one dimensional arrays in C with an example.
b) Write code segments for displaying numbers from 1 to 10 using while, do..while and for statements.

OR

6. a) Write a C Program to check weather given number is Armstrong number or not
b) Write a C program to accept and print the elements in a two dimensional arrays.

UNIT-IV

7. Explain about any four string handling functions with an example.

OR
8. Write a C program to find the given string is palindrome or not.

UNIT-V

9. a) What is a function? Describe different categories of function with suitable example programs.
b) Write a C program to find factorial of a number using recursion.

OR

10. a) What is the scope of variables of type extern, auto, register and static? Explain with example.
b) Describe any four preprocessor command with suitable examples.

Hall Ticket Number :
Code: 5GC14
| B.Tech. I Semester Supplementary Examinations June 2022

Engineering Mathematics-I

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$

OR

2. A body originally at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ in 20 minutes, the temperature of the air being $40^{\circ} \mathrm{C}$. What will be the temperature of the body after 40 minutes from the original and when will be the temperature be $50^{\circ} \mathrm{C}$.

UNIT-II

3. Solve $\left(D^{2}+4\right) y=x^{2}+\cos 2 x$

OR

4. Solve $\left(D^{3}+2 D^{2}+D\right) y=e^{-x}+\sin 2 x$

UNIT-III

5. Verify Rolle's theorem for $f(x)=\frac{\sin x}{e^{x}} \operatorname{in}(0, \pi)$

OR

6. Expand e^{x} in powers $(x-1)$ upto four terms.

UNIT-IV

7. If $u=x^{2}-2 y, v=x+y+z, w=x-2 y+3 z$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$

OR

8. If $x=r \cos \theta, y=r \sin \theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$.

UNIT-V

9. Trace the curve $y^{2}(2 a-x)=x^{3}$

OR

10. Trace the curve $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$

Code: 5GC15

| B.Tech. I Semester Supplementary Examinations June 2022
Mathematical Methods-I
(Common to CSE \& IT)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Give a brief note on the following.
i) Hermitian matrix.
ii) Skew-Hermitian
iii) Unitary matrix iv) Orthogonal matrix
b) Define the rank of the matrix. Find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] \text { by reducing it to normal form. }
$$

OR

2. Find the values of a and b for which the equations $x+a y+z=3, x+2 y+2 z=b, x+5 y+3 z=9$ will have i) no solution ii) Unique solution iii) Infinite no of solutions.

UNIT-II

3. Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$

OR

4. Show that if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots . . . \lambda_{n}$ latent roots of a matrix A are, then A^{3} has the latent roots $\lambda^{3}{ }_{1}, \lambda^{3}{ }_{2}, \lambda^{3}{ }_{3}, \ldots \ldots . . \lambda^{3}{ }_{n}$ and $k \lambda_{1}, k \lambda_{2}, k \lambda_{3}, \ldots \ldots . . k \lambda_{n}$ are latent roots of kA .

UNIT-III

5. Reduce the quadratic form $-3 x_{1}^{2}-3 x_{2}^{2}-3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$ to the canonical form. Find Index and Signature

OR

6. Show that $\mathrm{A}=\left[\begin{array}{ccc}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew-Hermitian matrix and also unitary

Find eigen values and the corresponding eigen vectors of A.

UNIT-IV

7. Using Newton-Raphson method, find a positive root of $\operatorname{Cos} x-x e^{x}$.

OR

8. Find a real root of $x e^{x}=3$ using Regula-Falsi method.

UNIT-V

9. Evaluate $\int_{0}^{2} e^{-x^{2}} d x$ using Simpon's rule. Taking $\mathrm{h}=0.25$.

OR

10. Using Lagrange's interpolation formula, find $y(10)$ from the following table

X	5	6	9	11
Y	12	13	14	16

