Hall Ticket Number : **R-15**

Code: 5G111

I B.Tech. I Semester Supplementary Examinations June 2022

Problem Solving Techniques and C Programming

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. a) Define Computer? Explain hardware and software components of a computer.

b) Write and algorithm and draw a flow chart to calculate percentage of a student in six subjects.

OR

- 2. a) Explain different types of computer languages in detail.
 - b) What is Keyword? Write and explain any ten keywords in C programming language.

UNIT-II

- 3. a) Define operator? Describe different types of operators used in c language with example.
 - b) What are formatted input and output functions in used in C explain with an example.

OR

- 4. a) Explain different data types in C programming language.
 - Evaluate the following expression by using rules of precedence and associativity. b)
 - i) 4/3+5-2+3/5
 - ii) 3 * 6 + 9 10 / 6

UNIT-III

- 5. a) What is an Array? Explain how to declare and initialize a one dimensional arrays in C with an example.
 - b) Write code segments for displaying numbers from 1 to 10 using while, do...while and for statements.

OR

- 6. a) Write a C Program to check weather given number is Armstrong number or not
 - b) Write a C program to accept and print the elements in a two dimensional arrays.

UNIT-IV

7. Explain about any four string handling functions with an example.

OR

Write a C program to find the given string is palindrome or not. 8.

UNIT-V

- 9. a) What is a function? Describe different categories of function with suitable example programs.
 - b) Write a C program to find factorial of a number using recursion.

OR

- 10. a) What is the scope of variables of type extern, auto, register and static? Explain with example.
 - b) Describe any four preprocessor command with suitable examples.

UNIT-I

Marks

Hall Ticket Number :						D 10
• • • • • • • •						K-15

Code: 5GC14

I B.Tech. I Semester Supplementary Examinations June 2022

Engineering Mathematics-I

(Common to All Branches)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. Solve $x \frac{dy}{dx} + y = x^3 y^6$

OR

 A body originally at 80° C cools down to 60° C in 20 minutes, the temperature of the air being 40° C. What will be the temperature of the body after 40 minutes from the original and when will be the temperature be 50° C.

3. Solve
$$(D^2 + 4)y = x^2 + \cos 2x$$

OR

UNIT-III

4. Solve
$$(D^3 + 2D^2 + D)y = e^{-x} + \sin 2x$$

5. Verify Rolle's theorem for
$$f(x) = \frac{\sin x}{e^x} in(0, f)$$

OR

6. Expand e^x in powers (x-1) upto four terms.

UNIT–IV

7. If
$$u = x^2 - 2y, v = x + y + z, w = x - 2y + 3z$$
, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$

OR

8. If
$$x = r \cos_{y}$$
, $y = r \sin_{y}$, then find $\frac{\partial(x, y)}{\partial(r, y)}$.

UNIT–V

9. Trace the curve
$$y^2(2a-x) = x^3$$

OR

10. Trace the curve
$$x = a(_{, +} \sin_{, -})$$
, $y = a(1 + \cos_{, -})$

	Code: 5GC15
	I B.Tech. I Semester Supplementary Examinations June 2022
	Mathematical Methods-I
	(Common to CSE & IT)
	Max. Marks: 70 Time: 3 Hours
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
4	UNIT-I
1.	 a) Give a brief note on the following. i) Hermitian matrix. ii) Skew-Hermitian iii) Unitary matrix iv) Orthogonal matrix
) Define the rank of the matrix Find the rank of the matrix
	$\begin{bmatrix} -2 & -1 & -3 & -1 \end{bmatrix}$
	$A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by reducing it to normal form.
	A= $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$ by reducing it to normal form.
	OR
2.	Find the values of a and b for which the equations
	x+ ay+ z=3, x+2y+2z=b, x+5y+3z=9
	will have i) no solution ii) Unique solution iii) Infinite no of solutions.
	UNIT–II
•	Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & 4 & 2 \end{bmatrix}$
3.	Find the Eigen values and Eigen vectors of the matrix $\begin{vmatrix} -6 & 7 & -4 \\ -6 & 1 & -6 \end{vmatrix}$
4.	OR Chave that if $[1, 1]$ between the set of a matrix A are then 4^3 has the latent roots
ч.	Show that if $\{1, 1, 2, 3, \dots, n\}_n$ latent roots of a matrix A are, then A^3 has the latent roots
	$\{3_1, 3_2, 3_3, \dots, 3_n \text{ and } k\}_1, k\}_2, k\}_3, \dots, k\}_n$ are latent roots of kA.
	UNIT-III
5.	Reduce the quadratic form $-3x_1^2 - 3x_2^2 - 3x_3^2 - 2x_1x_2 - 2x_1x_3 + 2x_2x_3$ to the canonical
	form. Find Index and Signature
	OR
6.	Show that A = $\begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a skew-Hermitian matrix and also unitary
0.	$\begin{bmatrix} 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$
	Find eigen values and the corresponding eigen vectors of A.
7.	Using Newton-Raphson method, find a positive root of $Cosx - xe^x$.
	OR
8.	Find a real root of xe ^x =3 using Regula-Falsi method.
	UNIT–V
9.	Evaluate $\int_{a}^{2} e^{-x^2} dx$ using Simpon's rule. Taking b-0.25
ອ.	Evaluate $\int_{0}^{2} e^{-x^{2}} dx$ using Simpon's rule. Taking h=0.25.
	OR
10.	Using Lagrange's interpolation formula, find y(10) from the following table
	X 5 6 9 11

Hall Ticket Number :

Marks

Х	5	6	9	11			
Y	12	13	14	16			
