Code: 5GC12

I B.Tech. I Semester Supplementary Examinations August 2021

Engineering Chemistry

(Common to CE, ME, IT \& CSE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Write short notes on
i) Scale and sludge
ii) Caustic embrittlement 7M
b) Discuss in brief the boiler corrosion. How is it controlled? 7M

OR
2. What are ionic exchange resins? Explain the ion-exchange method of softening water. Write reactions involved. Discuss the advantages of this method

UNIT-II

3. a) What is the principle underlying conductometric titration? Discuss the titration curve obtained for a titration between HCl and NaOH .
b) Explain the construction and working of $\mathrm{H} 2-\mathrm{O} 2$ fuel cell with neat sketch and chemical reactions

OR
4. a) On what factors does the conductance of a solution depend? How would you proceed to determine the conductivity of a solution?
b) Explain passivity of metals. How it affects rate of corrosion

UNIT-III

5. a) Explain the differences between thermoplastics and thermosetting plastics with examples
b) Write a brief note on Vulcanization and compounding of rubber

OR
6. a) Why silicones are called inorganic polymers? Discuss the synthesis of linear and cross linked silicones.
b) Describe the preparation, properties and engineering applications of Buna-N rubber

UNIT-IV

7. a) Define net and gross calorific values of a fuel. How are they determined experimentally for solid fuels?
b) A sample of Coal on analysis was found to contain the following. $\mathrm{C}=73.0 \%, \mathrm{H}_{2}=3.2 \%$, $\mathrm{O}_{2}=7.0 \%, \mathrm{~S}=1.5 \%, \mathrm{~N}_{2}=2.9 \%$. Calculate the quantity of air required for complete combustion of 1 kg of this coal

OR

8. a) Write a note on synthesis of petrol from Fischer Tropsch's synthesis.
b) Explain the following
i) Natural gas
ii) Water gas
iii) Biogas

UNIT-V

9. a) What is the significance of flash \& fire point, cloud \& pour point of a good lubricant?
b) Write functions of lubricants

OR

10. a) Describe the mechanism of extreme pressure lubrication
b) Explain the measurement and significance of the following properties of lubricant
(i) Viscosity
(ii) Aniline point
(iii) Neutralization Number

Code: 5GC14

| B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mathematics-I

(Common to All Branches)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Solve $\left(x^{3} y^{2}+x y\right) d x=d y$
b) Find the orthogonal trajectories of the family of curve $x y=c$

OR

2. a) Solve $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$
b) A tank contains 5000 liters of fresh water salt water which contains 100 gm of salt per litter flows into it at the rate of 10 liters per minute and the mixture kept uniform by stirring runs out at the same rate. When will the tank contain 200000gm? And how long will it take for the quantity of salt in the tank of increase from 150000 gm to 250000 gm ?

UNIT-II

3. a) Solve $(D-2) y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$
b) Using the method of variation of parameters, Solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$

OR

4. a) Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=e^{3 x}$
b) In an L.C.R circuit the charge q on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \operatorname{Sin} p t$ the circuit is turned to resonance so that $p^{2}=\frac{1}{L C}$ find the current i

UNIT-III

5. a) Verify Lagrange's Mean value theorem for $f(x)=e^{x}$ in $[0,1]$
b) Using Maclaurin's series, expand $f(x)=\log (1+x)$
OR
6. If $f(x)=\sin ^{-1} x, 0<a<b<1$, use Mean value theorem to prove that $\frac{b-a}{\sqrt{\left(1-a^{2}\right)}}<\sin ^{-1} b-\sin ^{-1} a<\frac{b-a}{\sqrt{\left(1-b^{2}\right)}}$

UNIT-IV

7. a) Find first and second partial derivatives of $f(x, y)=a x^{2}+2 h x y+b y^{2}$ and verify $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$
b) Find the maximum and minimum values of $f(x, y)=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$

OR

8. a) If $U=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ prove that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} U=\frac{-9}{(x+y+z)^{2}}$
b) Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}+z^{2}$ if $a x^{2}+b y^{2}+c z^{2}=1$ and $l x+m y+n z=0$

UNIT-V

9. Trace the curve $r=a(1-\cos \theta)$

OR

Code: 5GC15

I B.Tech. I Semester Supplementary Examinations August 2021
 Mathematical Methods-I
 (Common to CSE \& IT)

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Give a brief note on the following.
i) Hermitian matrix.
ii) Skew-Hermitian
iii) Unitary matrix iv) Orthogonal matrix
8M
b) Find the values of a and b for which the equations $x+a y+z=3, x+2 y+2 z=b, x+5 y+3 z=9$ will have i) no solution ii) Unique solution iii) Infinite no of solutions.

OR

2. Define the rank of the matrix. Find the rank of the matrix
$A=\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$ by reducing it to normal form.
UNIT-II
3. a) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$

8M
b) Show that if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots . \lambda_{n}$ latent roots of a matrix A are, then A^{3} has the latent roots $\lambda^{3}{ }_{1}, \lambda^{3}{ }_{2}, \lambda^{3}{ }_{3}, \ldots \ldots . \lambda^{3}{ }_{n}$ and $k \lambda_{1}, k \lambda_{2}, k \lambda_{3}, \ldots \ldots . . k \lambda_{n}$ are latent roots of $k A$.

OR
4. Define a model matrix, Diagonalize the Matrix $A=\left[\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$

UNIT-III
5. Reduce the quadratic form $-3 x_{1}^{2}-3 x_{2}^{2}-3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$ to the canonical form. Find Index and Signature

OR
6. Show that $\mathrm{A}=\left[\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew-Hermitian matrix and also unitary. Find Eigen values and the corresponding eigen vectors of A.

UNIT-IV

7. a) Find a real root of the equation $x^{3}-x-11=0$ by bisection method.
b) Using Newton-Raphson method, find a positive root of $\operatorname{Cos} x-x e^{x}$.

OR
8. a) Find a real root of $x e^{x}=3$ using Regula-Falsi method.
b) Evaluate $\sqrt{28}$ to four decimal places by Newton-Raphson Method

UNIT-V

9. Using Lagrange's interpolation formula, find $y(10)$ from the following table

X	5	6	9	11
Y	12	13	14	16
$\mathbf{O R}$				

10. Evaluate $\int_{0}^{2} e^{-x^{2}} d x$ using Simpon's rule. Taking $\mathrm{h}=0.25$.
Hall Ticket Number :
\square

Code: 5G111

| B.Tech. I Semester Supplementary Examinations Augus† 2021

Problem Solving Techniques and C programming

 (Common to All Branches)Max. Marks: 70
Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Describe computer hardware and computer software.
b) Define Algorithm. Write an Algorithm to read 20 numbers and print their sum. 7M
OR
2. a) Discuss briefly about computer languages.7M
b) Explain the software development method in detail. 7M
UNIT-II
3. a) Describe structure of C program with suitable example. 7M
b) Write a program to find out total and average of three subject marks. 7M
OR
4. a) What is conditional operator? Write a program to enter two numbers and find the smallest out of them. Use conditional operator. 7M
b) Explain in detail about C data types. 7M
UNIT-III
5. a) With Examples, explain while, do while and for loops 6M
b) Write a program to find out whether the given number is perfect number or not. 8M
OR
6. Write a program to generate prime numbers between 1 and 1000. (use break statement to reduce number of iterations) 14M
UNIT-IV
7. a) What is an array? How is one dimensional array declared and initialized? 7M
b) Write a program to find the sum of all elements in an array. 7M
OR
8. a) Discuss all string handling functions in C Language. 7M
b) Write a program to find whether a given string is palindrome or not. 7M
UNIT-V
9. Explain different storage classes with examples 14M
OR
10. a) Explain the differences between call by value and call by reference with examples. 8M
b) What is recursive function? Write a program to find factorial of integer value using recursive function. 6M
