	Hal	Ticket Number :	
		R-15	
	Coa	e: 5GC14 I B.Tech. I Semester Supplementary Examinations December 2022	I
		Engineering Mathematics-I	
	Ма	(Common to all Branches) x. Marks: 70 Time: 3 Hours	
		wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT-I	
1.	a)	A bacterial culture, growing exponentially, increases from 100 to 400 grams in 10 hours. How much was present after 3 hours	7M
	b)	Find the Orthogonal trajectories of the family of parabolas $y^2 = 4ax$	7M
		OR	
2.		Find the Orthogonal trajectories of the family of curves $r = a(1 + \cos r)$	14M
3.		UNIT–II Using the method of variation of parameters, solve $(D^2 + a^2)y = \sec ax$	
0.		Using the method of variation of parameters, solve $(D + a)y = \sec ax$ OR	14M
4.		Solve $(D^2+4)y = \sin x$	
		Solve $(D^{-}+4)y - \sin x$	14M
		UNIT–III	
5.	a)	Expand $\sin x$, by using Maclaurin's theorem.	7M
	b)	Verify Rolle's Theorem for $f(x) = e^x(\sin x - \cos x)in\left(\frac{f}{4}, \frac{5f}{4}\right)$	7M
		OR	
6.		If $f(x) = \sin^{-1} x, 0 < a < b < 1$, use Mean value theorem to prove that	
		$\frac{b-a}{\sqrt{(1-a^2)}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{(1-b^2)}}$	
		$\sqrt{(1-a^2)} \qquad \qquad \sqrt{(1-b^2)}$	14M
7.		If $u = \sin^{-1}(\frac{x^2 + y^2}{x + y})$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$	4 4 5 4
		OR	14M
8.		Given $x + y + z = a$, find the maximum value of $x^m y^n z^p$	14M
			1-+171
		UNIT-V	
9.		Trace the curve $x = a(x + \sin x)$, $y = a(1 + \cos x)$	14M
		OR	
10.		Trace the curve $r = a(1 - \cos \pi)$	14M

Hall Ticket Number :										
Code: 5GC15							II			R-15
B.Tech. Ser	nester S	lagu	ement	arv E	xan	nina	tions	De	cemb	er 2022
		•••	emati							
		(Cor	nmon t	o CS	Ear	nd IT)			
Max. Marks: 70										Time: 3 Hours
Answer any five full qu	estions b	by cho	-	ne qı	uesti	on fro	om e	ach	unit (5	5x14 = 70 Marks)
		[UNIT	- I						
Reduce the matrix to	o normal t	form ar	nd hence	e find	its ra	ank				
$\begin{bmatrix} 1 & 2 & -1 & 4 \end{bmatrix}$										
2 4 3 4										
1 2 3 4										
$\begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$										
				OF	र					

- 2. a) Test for consistency and solve 5x+3y+7z = 4, 3x+26y+2z = 9, 7x+2y+10z = 5
 - b) Solve x + 3y 2z = 0, 2x y + 4z = 0, x 11y + 14z = 0.

UNIT-II

- 3. Find the Eigen roots and Eigen vectors of the matrix
 - $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

OR

- 4. Diagonalise the matrix
 - $\mathsf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$

UNIT-III

- 5. Reduce the Quadratic form $8x^2 + 7y^2 + 3z^2 12xy 8yz + 4zx$ to the normal form by orthogonal transformation.
- 6. Reduce the quadratic form $7x^2 + 6y^2 + 5z^2 4xy 4yz$ to the canonical form.
- 7. a) Find the real root of the equation $x^3 2x 5 = 0$ by regula-falsi method correct to three decimals.
 - b) Using Newton's -Raphson method, find the real root of $x^3 3x + 1 = 0$ correct to 3 decimals.

OR

OR

- 8. a) Find the real root of the equation $e^x = 4 \sin x$ by using bisection method correct to four decimals.
 - b) Evaluate $\sqrt[3]{24}$ by Newton's iteration method correct to four decimals.

UNIT-V

9. From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80
No.of students	31	42	51	35	31
		OR			

10. A curve is passing through the points (0,18) (1,10) (3,-18) and (6,90). Find the slope of the curve at x = 2.

	Hall	Ticket Number :]						
C	Code	r: 5G111 R-15							
		I B.Tech. I Semester Supplementary Examinations December 2022							
	F	roblem Solving Techniques and Introduction to C Programming							
	Max	(Common to All Branches) . Marks: 70 Time: 3 Hours							
	-	ver any five full questions by choosing one question from each unit (5x14 = 70 Marks)							
		UNIT–I							
1.	a)	a) Differentiate between computer hardware and software							
	b)	Write an algorithm to find product of two integers using repetitive addition	7M						
2		OR	714						
2.	a)	Explain in detail about the software development method.	7M						
	b)	List and explain various symbols used in flowcharts with figures UNIT-II	7M						
3.	a)	Discuss about operator precedence in expression evaluation with a suitable							
		example.	7M						
	b)	Give the format for conditional operator. When is it used? OR	7M						
4.	a)	Explain different data types supported by C language with their memory requirements.	7M						
	b)	Describe the structure of a C program with example UNIT-III	7M						
5.	a)	Write a C Program to check weather given number is Amstrong number or not	7M						
	b)	Explain the significance of 'break' and 'continue' statement with a sample program. OR	7M						
6.	a)	Write 'C' program to print the Fibonacci sequence.	7M						
	b)	In what way a do – while loop differs from while loop. Explain.	7M						
	,								
7.	a)	Write a program to print an array in reverse order	7M						
	b)	Write a C Program to delete 'n' characters in a given string	7M						
		OR							
8.	a)	What is an Array? How to declare and initialize a one dimensional array?	4M						
	b)	 Explain different string manipulation functions with example UNIT-V 							
9.	a)	What is the scope of variables of type extern, auto, register and static? Explain with example.	10M						
	b)	What is meant by user defined function? Explain with an example C program OR	4M						
10.	a)	What is a function? What are its advantages? Explain various parameter passing techniques.	10M						
	b)	Write a function that checks whether a given year is leap year or not.	4M						
	,	***							