	Ha	all Ticket Number :													
	Со	de: 7GC14	JJ	I			1		1			I	R- 1	17	
		IB.Tech.ISer									s De	ecem	ber 2022	2	
			E	ngin (Col		-									
	Μ	ax. Marks: 70		(00)	mine			Jun	CHES	•)			Time: 3	Hours	
	Ar	nswer any five full qu	Jestions	s by cł	noosii	****	****		on fro	om e	ach	unit (5	5x14 = 70 /	Marks)	
1.	a)	Find the eigen valu	es and	eiaen [.]	vecto		<u>NIT-</u> [5								
		Find the eigen valu													7M
	b)	Prove that if $\}_1, \}_2$ eigen values of A ² .	₂ ,} ₃ ,	} _n a	re eig	gen v	alue	s of	A th	en }	$\{ {}^{2}_{1}, \}$	$\{\frac{2}{2}, \}_{3}^{2}$	$,\}_{n}^{2}a$	re the	7M
		$\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$					OR								
2.		If A= $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$	verify Ca	ayley-H	lamilt	on th	eorei	m. Fi	nd A⁴	and	A⁻⊢u:	sing Ca	ayley-Ham	ilton.	
		$\begin{bmatrix} 2 & -2 & 1 \end{bmatrix}$					NIT-I								14M
			[0	i											
3.		Show that the matr	ix i	0 is	Skew	-Her	mitia	n an	d her	nce fi	nd e	igen v	alues and	eigen	
		vectors.	L]											14M
Λ	2)	Prove that The Fig		on of o	Uorn		OR	riv or		rool					
4.	a) b)	Prove that The Eige Define Hermitian, s									exam	ple for	each		7M 7M
	,					UN	IIT–I		-						7 101
5.	a) b)	A bacterial culture, much was present Find the orthogonal	after 3 H	Hrs. fro	om the	e initi	ial ins	stant	?		to 4	00gms	s in 10 Hrs	. How	7M
		$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2} + } =$	1, whe	re } t	being	the p	barar	neter							
		$a^{-} b^{-} + \}$					OR								7M
6.		Find the orthogonal	Trajec	tories	of the			curv	es						
		$x^2 + y^2 + 2gx + e$	c = 0 v	vhere	g is p		eter. II T-I								14M
7.		Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} +$	4v = 82	$x^2 e^{2x}$ s	in 2x										
		dx^2 dx	<i>J</i> = -				OR								14M
8.			(-				d^2y		2				
0.		Using the Method c	of variati	on of I	Parar	neter UN	's, sc NIT-N	ve -	$\frac{dx^2}{dx^2}$	- y =	1+e	x			14M
9.		Prove that (if 0 <a< td=""><td><b<1),< td=""><td><u>b-</u></td><td>$\frac{a}{a} <$</td><td>tar</td><td>$\mathbf{h}^{-1}\boldsymbol{k}$</td><td>b — 1</td><td>tan</td><td>$a^{-1}a$</td><td>$< \frac{l}{l}$</td><td>$\frac{a}{2}$</td><td>. Hence</td><td>show</td><td></td></b<1),<></td></a<>	<b<1),< td=""><td><u>b-</u></td><td>$\frac{a}{a} <$</td><td>tar</td><td>$\mathbf{h}^{-1}\boldsymbol{k}$</td><td>b — 1</td><td>tan</td><td>$a^{-1}a$</td><td>$< \frac{l}{l}$</td><td>$\frac{a}{2}$</td><td>. Hence</td><td>show</td><td></td></b<1),<>	<u>b-</u>	$\frac{a}{a} <$	tar	$\mathbf{h}^{-1}\boldsymbol{k}$	b — 1	tan	$a^{-1}a$	$< \frac{l}{l}$	$\frac{a}{2}$. Hence	show	
				- · · ·							1	$+a^{2}$			
		that $\frac{f}{4} + \frac{3}{25} < 1$	tan ⁻¹	$\frac{4}{3} < \frac{1}{3}$	$\frac{f}{4} +$	$\frac{1}{6}$.									14M
							OR								
10.	a)	Verify Rolle's theore	am for ·	s1n 2	$\frac{\mathcal{K}}{\mathbf{i}}$	n	(0)	f)							
	u)		UTTU	e^{x}	L	ī	(0,	ן נ	•						7M
	b)	Verify Lagrange's n	nean va	lue the	eoren	n for	f(x	\mathbf{r}) = (.	(x-1)	(x -	2)()	(x-3)ir	n [0, 4]		7M
						*	**								

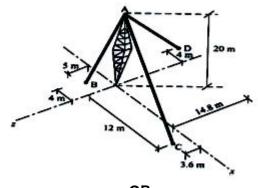
Į		Il Ticket Number : R-17	
	Coc	le: 7GC12 I B.Tech. I Semester Supplementary Examinations December 2022	
		Engineering Chemistry	
		(Common to CE, ME & CSE)	
	Mc	ax. Marks: 70 Time: 3 Ho	Urs
	Ans	swer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Mar})$	ks)
	a)	Differentiate temporary and permanent hardness of water.	7
•	с, b)	What is break point chlorination? State its significance?	71
	2)	OR	
2.	a)	Describe the desalination process by reverse osmosis with a neat sketch.	7
	b)	Write a note on internal treatment?	7
	2)		
		UNIT–II	
3.		Explain the composition ,applications and advantages of the following cells	
		(i)Ni-Cd cell & (ii) Lithium ion cell.	14
		OR	
ŀ.	a)	What is concentration cell corrosion and galvanic corrosion?	71
	b)	Calculate the standard emf of Ni-Ag cell whose E^0_{Ni} and E^0_{Ag} are -0.25 and +0.83	7
		respectively also write cell representation.	/ 1
		UNIT–III	
5.	a)	Write a note on vulcanization of rubber.	71
	b)	explain the synthesis, mechanism and applications of carbohydrates	71
		OR	
ò.	a)	Write a note on compounding of rubber?	71
	b)	Explain with examples the terms: addition polymerization, condensation polymerization	
		and co-polymerization.	71
		UNIT-IV	
.	a)	What is meant by power alcohol? Write the preparation and properties of power	
		alcohol.	71
	b)	Classify the fuels with examples?	71
		OR	
3.	a)	Write a note on production and uses of producer gas, water gas and Bio gas.	71
	b)	Define knocking? Write about octane number?	71
		UNIT-V	
).		Explain the mechanism of (i) thin film lubrication, (ii) thick film lubrication	14
••		OR	1-11
).	a)	What are lubricants? Write any three properties and applications of lubricants.	7
•	b)	What are refractories? Discuss any three properties of refractories?	71
	5)	***	1

Hall Ticket Number :						D 17
						K-I/

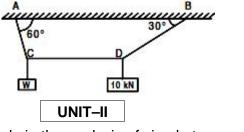
Code: 7G512

I B.Tech. I Semester Supplementary Examinations December 2022

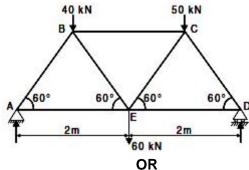
Engineering Mechanics-Statics

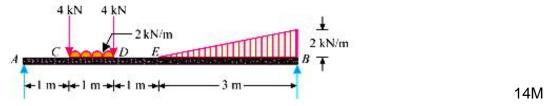

(Common to CE & ME)

Max. Marks: 70


Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I


1. A transmission tower is held by three guy wires AB, AC and AD anchored by bolts at B, C and D respectively. If the tension in AB is 2100 N, determine the components of the force exerted by the wire on the bolt B.


- OR
- 2. State and prove Varignon's theorem. a)
 - b) A cord supported at A and B carries a load of 10 KN at D and a load of W at C as shown in Fig. 3. Find the value of W so that CD remains horizontal.

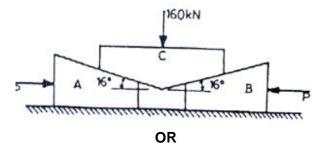
- 3. Discuss the assumptions made in the analysis of simple truss. a)
 - Determine the forces in all the members of the truss shown in Fig. and indicate the b) magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m.

4. A simply supported beam is loaded as shown in figure. Find the reactions.

Page 1 of 2

6M

14M

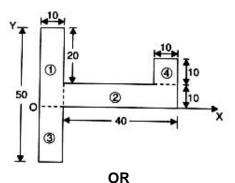

8M

4M

10M

UNIT-III

5. A weight of 160 kN is to be raised by means of the wedges A and B as shown in figure. Find the value of force P for impending motion of block C upwards, if coefficient of friction is 0.25 for all surfaces. Weights of the block C and the wedges may be neglected.



- 6. a) State the laws of static and dynamic friction.
 - b) Define the terms : Friction, limiting force of friction, co-efficient of friction and angle of friction.
 - c) Explain the concept of cone of friction.

10.

UNIT–IV

7. Locate the Center of gravity of the area as shown in figure with respect to coordinate axes. All dimensions are in mm.

14M

6M

8M

14M

6M

4M

4M

- 8. a) Explain the terms centre of gravity and centroid
 - b) State and explain Pappus and Guldinus first and second theorems.

UNIT-V

9. A brass cone with base diameter of 400 mm and height of 225 mm is placed on a vertical aluminium cylinder of height 300 mm and diameter 400 mm. Density of brass=85*kN/m*³and density of aluminium=25.6 k*N/m*³. Determine the mass moment of inertia of the composite body about the vertical geometrical axis.

OR

- a) State and prove parallel axis theorem. 7M
 b) Derive the expression for moment of inertia of a triangle about centroidal axis. 7M
 - ***

		Ticket Number : R-17	
C	oae	I B.Tech. I Semester Supplementary Examinations December 2022	
		Problem Solving Techniques and C Programming	
		(Common to All Branches)	
	-	. Marks: 70 ver any five full questions by choosing one question from each unit (5x14 = 70 Mark ********	
		UNIT–I	
	a)	Differentiate between computer hardware and software	7
	b)	Write an algorithm to find product of two integers using repetitive addition	7
-	a)	OR Explain in detail about the software development method.	7
	b)	List and explain various symbols used in flowcharts with figures	7
		UNIT–II	
•	a)	Discuss about operator precedence in expression evaluation with a suitable example.	7
	b)	Give the format for conditional operator. When is it used?	7
		OR	
•	a)	Explain different data types supported by C language with their memory requirements.	7
	b)	Describe the structure of a C program with example	7
		UNIT–III	
•	a)	Write a C Program to check weather given number is Amstrong number or not	7
	b)	Explain the significance of 'break' and 'continue' statement with a sample program. OR	7
	a)	Write 'C' program to print the Fibonacci sequence.	7
	b)	In what way a do – while loop differs from while loop. Explain.	7
		UNIT–IV	
•	a)	Write a program to print an array in reverse order	7
	b)	Write a C Program to delete 'n' characters in a given string	7
	-)	OR	
•	a)	What is an Array? How to declare and initialize a one dimensional array?	4
	b)	Explain different string manipulation functions with example UNIT-V	10
	a)	What is the scope of variables of type extern, auto, register and static? Explain	4.0
	b)	with example.	10
	b)	What is meant by user defined function? Explain with an example C program OR	4
	a)	What is a function? What are its advantages? Explain various parameter passing	
	,	techniques.	10
	b)	Write a function that checks whether a given year is leap year or not.	4