	~ -	de: 70.012	
	Co	de: 7GC13	_
		I B.Tech. I Semester Supplementary Examinations February 2022	
		Engineering Physics (Common to EEE & ECE)	
	м	ax. Marks: 70 Time: 3 Hours	
		is wer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$	
		*****	Ма
		UNIT–I	IVIa
١.	a)	Derive the expressions for diameters of dark and bright Newton's rings	7
	b)	Distinguish He-Ne laser from Ruby laser	7
	,	OR	
2.	a)	Analyze the optical signal transmission through graded-index optical fiber.	7
	b)	The refractive indices of core and cladding of an optical fiber are 1.50 and 1.45	
	,	respectively. Calculate the Numerical aperture, acceptance angle and critical angle of	7
		optical fiber.	
		UNIT–II	
3.	a)	Prove that FCC has closely packed structure by calculating packing fractions of S.C,	
		B.C.C and F.C.C	10
	b)	Evaluate the glancing angle on the cube (1 1 0) of rock salt crystal (a=0.2814 nm)	
		corresponding to second order diffraction maximum for the X-ray of wavelength 0.071	2
		nm. OR	-
1	\sim	-	7
+.	a) b)	Analyze the various detection methods for ultrasonics Describe Non Destructive Testing of materials	-
	0)	UNIT-III	
5	a)	State and Explain Heisenberg's uncertinity principle	7
J.	b)	Derive Schrodinger's 1-D time independent wave equation for a free particle.	7
	5)	OR	'
3	a)	Classify the solids into metals, semiconductors and insulators	7
J.	b)	Explain the Fermi-Dirac distribution function along with its temperature dependence.	7
	0)		
7.	a)	State the Hall Effect and also derive the Hall coefficient	7
	b)	Explain the construction and working of LED	
	,	OR	
3.	a)	Analyze the formation of paired electrons in superconductors by using the B.C.S theory.	7
	b)	Write short notes on high T_c superconductors	7
	,		
Э.	a)	Distinguish the soft and hard magnetic materials	7
	b)	A magnetic material has a magnetization of 3300 A/m and flux density of 0.0044Wb/m ² .	
		Compute the magnetizing force and the relative permeability of the material.	7
		OR	
Э.	a)	OR Explain the construction and working of Ball mill method to prepare nanoparticles.	7

Ha	all Ticket Number :							R-17]
Co	ode: 7G311							K-17	
	IB.Tech.ISe		-	•				•	
	Fundam	entals of E					Enginee	ering	
		(Cc	mmon t	o eee a	& ECE)		Time of O Lie and	
	lax. Marks: 70 nswer any five full qu	lestions by ch	noosina o	ne que	estion fr	om e	each unit (Time: 3 Hours 5x14 = 70 Marks)	
7.0			-	*****		01110			
			UNIT-I						М
a)	State ohms law. G	ive the relatio		n volta	ide and		ent for ca	nacitor inductor	
. u)	and resistor.		in betwee		ige and				
b)	Determine the color	coding for the	e followin	a resist	ors.				
,	i) 100K ii) 47	iii) 2.2K	iv) 10	•					
			OR						
. a)	Explain the depend	ent and indep	endent so	ources.					
b)	Classify the types o	f resistors. Ex	plain fixe	d resist	ors with	n nea	t diagram.		
			UNIT-II						
. a)	State and explain K	irchoff's laws.							
b)	Differentiate series	and parallel c	ircuit						
			OR						
. a)	State and explain s	uper position t	theorem.						
b)	Find current through	h 5 resistor u	using The	venin's	theore	m for	the circuit	given below.	
		22V +	A 10 5 B	+ 33	3V				
		, -	UNIT-III						
. a)	Explain the operation							de a contra de d	
b)	If the forward volta forward current, if the	• • •						the value of the	

		OR
6.	a)	Explain breakdown mechanism in PN junction diode

6. a)	Explain breakdown mechanism in PN junction diode	10M
b)	A Ge diode carries a current of 1mA at room temperature when a forward bias of 0.15 V	
	is applied. Estimate the reverse saturation current at room temperature	4M

UNIT-IV

7.	a)	Derive the expressions for the following for full wave rectifier	10M							
		i) Average DC load current ii) Average DC load voltage iii) RMS load current								
	b)	Compare half wave and full wave rectifiers in respect of following terms and comment on the comparisons.i) efficiencyii) Ripple factor	4M							
		OR								
8.	a)	a) Compare half wave and full wave rectifiers.								
	b)	List the advantages of bridge rectifier	6M							
		UNIT-V								
9.	a)	Write the current components in PNP transistor and explain.								
	b)	Draw and explain input and output characteristics of CE configuration.								
		OR								
10.	a)	Explain hoe BJT acts as an amplifier.	7M							

b) Explain the working principle of NPN transisitor. 7M

	Ha	all Ticket Number :								[٦
	Со	de: 7G111								R-17	
		IB.Tech.ISe								•	
		Proble	m Solvir	•	-			rogra	mmir	ng	
	M	ax. Marks: 70	(*	Comm	on to A	II Branc	ches)			Time: 3 Hours	
		nswer any five full qu	vestions b	y choos	ing one	questic	on fron	n each	unit (5		
					******	**					Marks
				U	NIT-I						
1.	,	What is a flow chart				•					7M
	b)	Illustrate different ph	ases of Sc		•	nent Life	Cycle	(SDLC) with a	neat diagram.	7M
2	\sim	What is Programm	ing Longu		OR /bot_ic_tl	ha aan	oration	of pro	aromm	ing Longuage?	
Ζ.	a)	What is Programm Describe it briefly.	ing Langu	lage? W	vnat is ti	ne gene	eration		gramm	ing Language?	7M
	b)	Give short notes on	computer	enviror	nments.						7M
				UN	IIT–II						
3.	a)	What is a variable?		e the ru	les for d	eclaring	y varia	bles?	Give ex	amples of valid	
	L)	and invalid variable									7M
	b)	Describe Structure	or C progr		orn exan OR	npie.					7M
4	a)	Explain about the ba	asic data t			ane witl	n exam	nles			7M
	с, b)	Explain with examp		•••	•	•		•	na lana	uade.	7M
	,		, ,		IT–III				3 3		
5.	a)	Explain for loop an	d nested	for loop	in c pro	gramm	ing lar	nguage			7M
	b)	Write a program to	print sum	n of odd	number	rs betw	een 1	and 10	0 using	g for loops.	7M
_					OR						
6.	a)	Explain with examp						ents.			7M
	b)	Write a program to	find the la	·		e numi	oers.				7M
7	a)	How single dimensi	onal arrav		IT–IV	nsional	arravs	are de	clared	and initialized?	
	u)	Explain with suitable			landanno	noronai	unuye				7M
	b)	How to declare and	d initializa	tion of s	strings?	Explain	them	with ex	ample	S.	7M
					OR						
8.	a)	Explain any five stri	•	•			e exan	nples,			7M
	b)	Write a C program f	for addition			5.					7M
0	a)	Discuss in details a	bout loca		IIT-V		ariable	o with	rocooo	t to thoir scope	
9.	a)	and extent.		i vanadi	es anu (yiuuai v		5 WIUT	respec		7M
	b)	Explain about the	actual ar	guments	s and fo	ormal a	rgume	nt in fu	unction	s. What is the	
		difference between	these arg								7M
40		What are the differen	nt wave -		OR	otore 1-	the fi	notion	Evola	n	714
10.	a) b)	What are the differe Write a c program to	•	•	• •				•		7M 7M
	5)	while a c program u		acional		inci us	ing iet			1.	1 11

						R-17
Hall Ticket Number :						

Code: 7GC14

Max. Marks: 70

I B.Tech. I Semester Supplementary Examinations February 2022

Engineering Mathematics-I

(Common to All Branches)

Time: 3 Hours

UNIT-I

Marks

7M

7M

1. a) Define the rank of the matrix. Find the rank of the matrix

- $\mathsf{A} = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$
- b) Find the values of 'k ' for which the system of equations
 (3k-8)x +3y +3z = 0, 3x+ (3k-8)y + 3z = 0, 3x +3y +(3k-8)z = 0 has a non-trivial solution.

OR

2. a) Find the eigen values and eigen vectors of

 b) Test for consistency and solve 5x+3y+7z=4, 3x+26y+2z=9, 7x+2y+10z=5
 7M

3. a) Show that the matrix $\begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is Skew-Hermitian and hence find

eigen values

b) Reduce the quadratic form $10x^2 + 2y^2 + 5z^2 - 4yz - 10zx + 5xy$ TM to the canonical form by linear transformation. 7M

OR

- 4. a) Diagonalize the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ 7M
 - b) Find the Eigen values and Eigen vectors $A = \begin{bmatrix} 4 & 1-3i \\ 1+3i & 7 \end{bmatrix}$ 7M

Code: 7GC14

UNIT–III

5. a) Solve
$$x \frac{dy}{dx} + y = x^3 y^\circ$$

b) Prove that the system of parabolas $y^2 = 4a(x+a)$ is self orthogonal.
OR
6. a) A body is kept in air with temperature 25°c cools from 140°c to 80°c in 20 minutes. Find the when the body cools down to 35°c
b) Find the orthogonal Trajectories of the family of curves $r^* = a^* \cos n$, 7M
UNIT-IV
7. a) Solve $\frac{d^3y}{dx^3} - y = e^x + \sin 3x + 2$
b) Solve $(D^2 + 1)y = \sin x \sin 2x + e^x x^2$
OR
8. a) Solve $(D+2)(D-1)^2 y = e^{-2x} + 2\sinh x$
b) Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$
UNIT-V
9. a) If $x + y + z = u$, $y + z = uv$, $z = uvw$, then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$
b) Verify lagrange's mean value theorem for $f(x) = (x-1)(x-2)(x-3) \ln [0,4]$
OR
10. a) Let $r^2 = x^2 + y^2 + z^2$ and $V = r^m$ then prove that $V_{xx} + V_{yy} + V_{zz} = m(m+1)r^{m-2}$
b) Find the maxima and minima of $z = x^3 + 3x y^2 - 3x^2 - 3y^2 + 4$
