Hall Ticket Number : **R-17**

Code: 7G111

I B.Tech. I Semester Supplementary Examinations June 2022

Problem Solving Techniques and C Programming

(Common to All Branches)

Max. Marks: 70

Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. a) Define Computer? Explain hardware and software components of a computer.

b) Write and algorithm and draw a flow chart to calculate percentage of a student in six subjects.

OR

- 2. a) Explain different types of computer languages in detail.
 - b) What is Keyword? Write and explain any ten keywords in C programming language.

UNIT-II

- 3. a) Define operator? Describe different types of operators used in c language with example.
 - b) What are formatted input and output functions in used in C explain with an example.

OR

- 4. a) Explain different data types in C programming language.
 - Evaluate the following expression by using rules of precedence and associativity. b)
 - i) 4/3+5-2+3/5
 - ii) 3 * 6 + 9 10 / 6

UNIT-III

- 5. a) What is an Array? Explain how to declare and initialize a one dimensional arrays in C with an example.
 - b) Write code segments for displaying numbers from 1 to 10 using while, do...while and for statements.

OR

- 6. a) Write a C Program to check weather given number is Armstrong number or not
 - b) Write a C program to accept and print the elements in a two dimensional arrays.

UNIT-IV

7. Explain about any four string handling functions with an example.

OR

Write a C program to find the given string is palindrome or not. 8.

UNIT-V

- 9. a) What is a function? Describe different categories of function with suitable example programs.
 - b) Write a C program to find factorial of a number using recursion.

OR

- 10. a) What is the scope of variables of type extern, auto, register and static? Explain with example.
 - b) Describe any four preprocessor command with suitable examples.

UNIT-I

Marks

Hall Ticket Number :						P 17
						D 17

Code: 7GC14

Max. Marks: 70

I B.Tech. I Semester Supplementary Examinations June 2022

Engineering Mathematics-I

(Common to All Branches)

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. Find the Rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$$

OR

2. Verify Cayley-Hamilton theorem for the matrix for the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 4 & 3 & 2 \\ 2 & 4 & 3 \end{bmatrix}$

UNIT–II

3. a) Show that the Eigen values of a Hermitian matrix are all real

b) Show that
$$\frac{1}{2} \begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$$
 is a unitary matrix

OR

4. Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is Skew-Hermitian and also unitary matrix.

5. a)
$$solve \underbrace{(1+y_2)dx}_{Solve} = \underbrace{(tan^{1-1}y)}_{y'-x)dx} = \underbrace{(1+y_2)dx}_{y'-x)dx}$$

OR

6. If the temperature of a body is changing from 100°c to 70°c in 15 minutes, find when the temperature will be 40°c, if the temperature of air is 30°c.

7. Solve
$$\frac{d^2y}{dx^2} + a^2y = \operatorname{Tan} ax$$
 by the method of variation of parameters.

OR

8. Solve
$$\frac{d^3y}{dx^3} - y = e^x + \sin 3x + 2$$

9. If
$$x + y + z = u$$
, $y + z = uv$, $z = uvw$, then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$

OR

10. Find the maxima and minima of $z = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$

	Ha	all Ticket Number :							<u> </u>						1
	Co	de: 7GC13								<u> </u>			R -1	17	
	I B.Tech. I Semester Supplementary Examinations June 2022													-	
	Engineering Physics														
				(Cc	mm	on t	o EE	E & E	ECE)						
		ax. Marks: 70 nswer any five full qu	vestions	s by ch	oosii	-	ne qı *****	Jesti	on fro	om ec	ich	unit (Time: 3 5x14 = 70		
					UN	T –I									Marks
1.	a)	Explain the theory of	of diame	eter of	Newt	on's	n th ri	ng							
	b)	What is diffraction a	and exp	lain dif	fracti	•		um i	n cas	se grat	ing				
•	、	_					OR				. –	, .	<i></i>		
2.	a) b)	Describe and derive													
	b)	Define and derive t fiber of $n_1 \& n_2$ are 1			-		-	Jucai	npe	ranu (carc	Julate	accept ar	igie oi	
					UNI	T–II									
3.		Show that the FCC out the packing fact		most c	losel	у ра	cked	of th	ne th	ree cu	bic	struct	ures by w	orking	
					С	R									
4.		Describe how ultras	sounds	can be	proc	luceo	d usir	ng th	e pie	zoelec	tric	princi	ple.		
					UNI	T–III									
5.	a)	Deduce Schrodinge		-			ave e	equat	ion						
	b)	Write the sources of	f electri	ical res	istivi	-									
6	a)	Describe the import	ance of	f Fermi	-Dira		OR tribut	tion f	uncti	on					
0.	a) b)	Explain qualitative to									5				
	~)			•		,				,					
					UNI	T–IV									
7.		Explain with a suital	ble diag	gram w	orkin	g of	Hall	effec	t and	its us	es.				
						R									
8.	a)	Describe with an ap		-			-		-N ju	Inction	dic	ode.			
	b)	Elaborate Josephso	on effec	ts and	their	appl	icatio	ons.							
					UNI	T–V									
-				L											

- 9. a) What is Bohr Magneton? Give an account of domain theory of ferromagnetism.
 - b) What are the different types of CNT? Outline their properties?

OR

- 10. a) What are the principles of nanomaterials
 - b) Describe any synthesis of nanomaterials and CNT with applications

Hall Ticket Number :							
Code: 7G311						R-17	

I B.Tech. I Semester Supplementary Examinations June 2022

Fundamentals of Electrical & Electronics Engineering

(Common to EEE & ECE)

Time: 3 Hours

Marks

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT–I

1. Classify the types of resistors. Explain any three types with neat diagram.

OR

- 2. a) State ohms law. Give the relation between voltage and current for capacitor, inductor and resistor.
 - b) Determine the color coding for the following resistors. i) 100K ii) 47 iii) 2.2K iv) 10K

UNIT–II

3. State and explain Kirchhoff's laws with example.

Max. Marks: 70

OR

4. Find current through 1 resistor using Norton's theorem for the circuit given below

- 5. a) Discuss the effect of temperature on characteristics of PN junction diode.
 - b) The voltage across a silicon diode at room temperature of 300°K is 0.62V when 2mA current flows through it. If the voltage increases to 0.80V, calculate the new diode current.

OR

- 6. a) Write short notes on Diffusion capacitance
 - b) Explain how Zener diode act as voltage regulator.

UNIT–IV

7. Illustrate the operation of Full wave rectifier with capacitor filter and derive the Ripple factor.

OR

- 8. a) Derive the expression for ripple factor and efficiency for half wave and full wave rectifiers.
 - b) Define the following i) Average current ii) RMS current iii) PIV

UNIT–V

- 9. a) Derive the relation between and
 - b) Explain the operation of PNP transistor with neat diagram.

OR

- 10. a) Compare CB, CE configurations of a transistor.
 - b) Define the following i). Active region ii) saturation region iii) Cut-off region.