	Hall	Ticket Number :				1
_	Code	e: 7GC13		R-1	7	
		I B.Tech. I Semester Supplementary Exami	inations De	ecember 2022	<u>)</u>	
		Engineering Physic				
	Max	(Common to EEE & EC a. Marks: 70	JE)	Time: 3	Hours	
		ver any five full questions by choosing one question ***********************************	n from each			
		UNIT-I				
1.	,	Define interference of light.	1.4	a e e e e		4M
	b)	Explain Fraunhoffer diffraction of light at single slit a OR	and its intens	ity distribution.		10M
2.	. a)	Write a note on applications of optical fibers in the f	field of senso	ors and medicine.	ı	7M
	b)	Distinguish between interference and diffraction of I	light.			7M
		UNIT-II				
3.		Show that FCC crystal is more tightly packed than	BCC and S	C crystal based	on	
		the packing fractions of the corresponding crystals. OR				14M
4.	. a)	Explain the terms (i) screw and edge dislocations (i	ii) Burger's ve	ector.		10M
	b)	For a simple cubic lattice find the ratios of interplana	ar separatior	1 d ₁₁₁ :d ₁₁₀ :d ₁₀₀		4M
		UNIT-III				
5.	. a)	Calculate the wavelength associated with electron v	with energy 2	2000eV.		7M
	b)	Distinguish between classical free electron theo theory of metals.	ory and qua	ntum free electi	ron	7M
		OR				
6.	. a)	Develop Schroendinger's time dependent wave equ	uation.			9M
	b)	State and explain Heisenberg's uncertainty principle	e.			5M
		UNIT-IV				
7.		Define magnetic dipole moment. List out variou	us sources	of magnetic dip	ole	
		moment in magnetic materials.				14M
8.	. a)	OR Illustrate the intrinsic and extrinsic form of semicor	nductors and	l construct coval	ent	
0.	. a)	and energy band diagrams.	nadotors and	Construct covar	Silt	7M
	b)	Express the working principle of pn junction diode v	with neat dia	gram.		7M
		UNIT-V				
9.	. a)	Give an account of BCS theory of super conductivit	ty.			9M
	b)	What are nano materials? Write the significance of	nano scale.			5M
		OR	_			
10.	,	Mention the significance of penetration depth in sup	perconductor	S.		9M
	b)	Explain properties of superconductors. ***				5M

	Hall	Ticket Number:											\neg
	Code	e: 7G311					1	J		JJ		R-17	
		IB.Tech. ISen	nester Su	ppler	nent	ary E	Exar	ninc	ıtion	s De	cem	ber 2022	
		Fundam	entals c	of Elec	tricc	1 & 1	Elec	tror	nics	Eng	inee	ering	
	May	x. Marks: 70		(Com	mon t	o EE	E &	ECE)			Time: 3 Hour	
		ver any five full qu	Jestions b	y choc	_	ne q		on fr	om e	each	unit (
					UN	IIT–I							
1.		Classify the types	of resisto	rs. Exp	ain an	•	e typ	es w	ith ne	eat dia	agram.		14M
2	۵۱	\\/hat is talerens	o2 What .	ara tha	0010#	OR		ad ta	ام ما:	ooto i	tha tal	laranaa yalya	
2.	a)	What is tolerance and write their ra		are the	COIOI	coae	s us	ea to	inai	cate	ine toi	erance value	7M
	b)	Differentiate idea	Ü	ctical vo	oltane	SOUR	2						7M
	D)	Differentiate face	ara prac	otioai ve		IIT–II							/ IVI
3.	a)	State and explain	n Kirchhof	f's laws									7M
	b)	State and explain				m.							7M
	,	·				OR							
4.	a)	Determine the 44Fand 6F are co	•	•		e wh	en t	hree	cap	acitor	s with	n values 3F,	7M
	b)	State and explain	n Thevenii	n's the	rem.								7M
					UN	IT–III							
5.	a)	Draw and explain	the energ	y band	diagra	ms of	f intri	nsic a	and e	xtrins	ic sem	niconductors	7M
	b)	What is mean by	avalanch	e breal	kdown	? Exp	olain.						7M
						OR							
6.	a)	How a PN junction	on diode a	icts as	a swite	ch? E	xplai	n.					6M
	b)	Write short notes											
		i) Junction capaii) Temperature of		ce on V	-l cha	racte	rietic	s of s	DNI	iunct	ion dic	nde	8M
		ii) Temperature e	асренаст	oc on v		IT–IV		0 01 0		jariot	ion aic	ode.	
7.		Explain the oper expression for rip						apac	itor ii	nput f	ilter a	nd derive the	14M
						OR							
8.		With neat diagraderive the expression			rms e	xplaii	n the	ope	ratio	n of l	Bridge	rectifier and	14M
					L	IT–V							
9.	a)	What is DSO? E	xplain its	operation	n.								7M
	b)	Compare CB, CE	E configura	ations (of a tra		or.						7M
						OR							

Explain the operation of CRO with neat diagram.

10.

Page 1 of 1

14M

Hall Ticket Number :												
Code: 7G111									R-17			

I B.Tech. I Semester Supplementary Examinations December 2022

Problem Solving Techniques and C Programming (Common to All Branches) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)UNIT-I 1. Differentiate between computer hardware and software 7M b) Write an algorithm to find product of two integers using repetitive addition 7M 2. a) Explain in detail about the software development method. 7M b) List and explain various symbols used in flowcharts with figures 7M UNIT-II 3. Discuss about operator precedence in expression evaluation with a suitable example. 7M b) Give the format for conditional operator. When is it used? 7M OR 4. Explain different data types supported by C language with their memory requirements. 7M b) Describe the structure of a C program with example 7M UNIT-III 5. a) Write a C Program to check weather given number is Amstrong number or not 7M b) Explain the significance of 'break' and 'continue' statement with a sample program. 7M 6. a) Write 'C' program to print the Fibonacci sequence. 7M b) In what way a do – while loop differs from while loop. Explain. 7M **UNIT-IV** 7. a) Write a program to print an array in reverse order 7M 7M b) Write a C Program to delete 'n' characters in a given string 8. a) What is an Array? How to declare and initialize a one dimensional array? 4M Explain different string manipulation functions with example 10M UNIT-V 9. a) What is the scope of variables of type extern, auto, register and static? Explain with example. 10M b) What is meant by user defined function? Explain with an example C program 4M 10. a) What is a function? What are its advantages? Explain various parameter passing 10M techniques. 4M b) Write a function that checks whether a given year is leap year or not.

Hall Ticket Number :	
Code: 7GC14	7
I B.Tech. I Semester Supplementary Examinations December 2022 Engineering Mathematics-I (Common to all Branches) Max. Marks: 70 Time: 3	
Answer any five full questions by choosing one question from each unit (5x14 = 70 N	
a) Find the eigen values and eigen vectors of $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	
b) Prove that if $\{1, 1, 2, 3, \ldots, n\}$ are eigen values of A then $\{1, 2, 3, 2, 3, \ldots, n\}$ eigen values of A ² .	
If $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ verify Cayley-Hamilton theorem. Find A^4 and A^{-1} using Cayley-Hamilton	lton.
2 -2 1	14
Show that the matrix $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ is Skew-Hermitian and hence find eigen values and	eigen
vectors. OR	1
a) Prove that The Eigen values of a Hermitian matrix are all real.	
Define Hermitian, skew-Hermitian, Unitary Matrices and give example for each UNIT-III	
 A bacterial culture, growing exponentially, increases from 100 to 400gms in 10 Hrs much was present after 3 Hrs. from the initial instant? Find the orthogonal trajectory of the family of confocal conics 	. How
$\frac{x^2}{a^2} + \frac{y^2}{b^2 + \}} = 1$, where $\frac{1}{a^2}$ being the parameter.	
Find the orthogonal Trajectories of the family of curves	
$x^{2} + y^{2} + 2gx + c = 0$ where g is parameter. UNIT-IV	14
Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 8x^2e^{2x}\sin 2x$	1
Using the Method of variation of Parameters, solve $\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$	1
Prove that (if 0 <a<b<1), <math="">\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}. Hence</a<b<1),>	show
that $\frac{f}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{f}{4} + \frac{1}{6}$.	1
) Verify Rolle's theorem for $\frac{\sin x}{e^x}$ in $(0,f)$.	
Verify Lagrange's mean value theorem for $f(x) = (x-1)(x-2)(x-3)$ in $[0, 4]$	

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.