Code: 7G511

| B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Graphics-I

(Common to CE and ME)
Max. Marks: 70
Time: 4 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. Two fixed points A and B are 100 mm apart. Trace the complete path of a point P moving in such a way that the sum of its distances from A and B is always the same and equal to 125 mm . Name the curve. Draw another curve parallel to and 25 mm away from this curve.

OR

2. Two straight lines $O A$ and $O B$ make an angle of 90 between them. P is a point 40 mm from $O A$ and 50 mm from $O B$. Draw a curve passing through P with $O A$ and $O B$ as asymptotes and marking atleast 10 points. Name the curve.

UNIT-II

3. A hypocycloid is in the form of 120 mm long straight line. Construct the curve and determine the diameters of the rolling and the directing circles.

OR

4. Construct path of the end of string when it is wound on a circle of 40 cm diameter without slipping. The length of the string is 150 cm long. Name the curve.

UNIT-III

5 a) Two pegs fixed on a wall are 4.5 metres apart. The distance between the pegs measured parallel to the floor is 3.6 metres. If one peg is 1.5 metres above the floor, find the height of the second peg and the inclination of the line joining the two pegs, with the floor.
b) A point P is 50 mm from both the reference planes. Draw its projections in all possible positions.

OR

6. A line $A B 90 \mathrm{~mm}$ long is inclined at 45° to the H.P. and its top view makes an angle of 60° with the V.P. The end A is in the H.P. and 12 mm in front of the V.P. Draw its front view and find its true inclination with the V.P.

UNIT-IV

7. A rectangular plane of sides 70 mm and 35 mm has a shorter side on the H.P. The surface of the plane is inclined at 60° to the H.P. and perpendicular to the V.P. Draw its projections.

OR

8. Draw a rhombus of diagonals 100 mm and 60 mm long, with the longer diagonal horizontal. The figure is the top view of a square of 100 mm long diagonals, with a corner on the ground. Draw its front view and determine the angle which its surface makes with the ground.

UNIT-V

9. The projectors of the ends of a line $A B$ are 5 cm apart. The end A is 2 cm above the H.P. and 3 cm in front of the V.P. The end B is 1 cm below the H.P. and 4 cm behind the V.P. Determine the true length and traces of $A B$ and its inclinations with the two reference planes using auxiliary plane method.

OR

10. A thin isosceles triangular plane $A B C$ of base 60 mm and altitude 50 mm has its base in the H.P. and inclined at 30° to the V.P. The corners A and C are in the V.P. Draw its projections using auxiliary plane method and find its inclination with the H.P.

Code: 7GC14

| B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Mathematics-I

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Reduce the matrix $A=\left[\begin{array}{cccc}1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0\end{array}\right]$ into its Echelon form and hence find its rank.
b) Test for Consistency of the following equations and if possible find the solution $2 x+2 y+4 z=18 ; \quad x+3 y+2 z=13 ; \quad 3 x+y+3 z=14$.

OR

2. a) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find its inverse.
3. a) Reduce the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ into canonical form and also write the nature of the quadratic form.
b) Show that $B=\left[\begin{array}{cc}3 i & 2+i \\ -2+i & -i\end{array}\right]$ is Skew-Hermitian. Find its Eigen values.

OR

4. a) Find a matrix P which diagonalizes the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$. Verify that $P^{-1} A P=D$.
b) Prove that the Eigen values of Hermitian matrix A are real.

UNIT-III

5. a) Solve $\sec ^{2} y \frac{d y}{d x}+x \tan y=x^{3}$.
b) Find the orthogonal trajectory of the cardioids $r=a(1-\cos \theta)$.
6. a) Solve $\frac{d y}{d x}+\frac{y \log y}{x-\log y}=0$.
b) Radium disintegrates at a rate proportional to its mass.When mass is 10 mgm , the rate of disintegration is 0.051 mgm per day. How long will it take for the mass to be reduced to 10 to 5 mgm ?

UNIT-IV

7. a) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$.
b) Solve the following ODE by the method of variation of parameters:
$\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$.

OR

8. a) Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$.
b) The damped LCR circuit is governed by the equation $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=0$ where L, R, C ate positive constants. Find the conditions under which the circuit is over damped, under damped and critically damped.

UNIT-V

9. a) Verify Lagrange's Mean value theorem for $f(x)=(x-1)(x-2)(x-3)$ in $[0,4]$
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$, given that $x y z=a^{3}$.

OR

10. a) Determine whether the following functions are functionally dependent or not. If functionally dependent, find the functional relation between them:

$$
u=\sin ^{-1} x+\sin ^{-1} y, \quad v=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}} .
$$

b) Find the maximum and minimum values of $f(x, y)=x^{3}+y^{3}-3 a x y$.

Hall Ticket Number :

R-17

Code: 7G111

I B.Tech. I Semester Supplementary Examinations May / June 2019 Problem Solving Techniques and C Programming (Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the various problem solving strategies with example. 7M
b) Write an algorithm to find the greatest number among 3 numbers 7M

OR

2. a) Differentiate between high level and low level language with example 7M
b) What do you mean by error in a program? Explain the strategies to handle the error. 7M

UNIT-II

3. a) Classify the operators in "C" with example.
b) Explain the structure of a C program with an example. 7M

OR

4. a) Explain the primitive data types of C with example. 8M
b) Explain type conversion in c 6 M
UNIT-III
5. a) Write a C program to illustrate the working of jump statements break and continue 8 M
b) Explain the "nested if "concept of C by an example. 6M

OR
6. a) Write a C Program to Display Fibonacci Sequence of 8 numbers 7M
b) Write the concept of "do while" and "while". When to use do while in a
program explain with an appropriate example.

UNIT-IV
7. a) Write a C Program to Find the Frequency of Characters in a String 7M
b) Explain the applications of String with suitable example. 7M

OR
8. a) Write a program to find the smallest number of an integer array. $A=\{34,45,6$, $\quad 7 \mathrm{M}$
$7,89\}$
b) Write a C Program to Copy String Without Using strcpy() 7M UNIT-V
9. a) Explain various type of qualifiers in C language. Write the importance of
"Static" key word.
b) Write a program using function to design an arithmetical calculator. 7M

OR
10. a) Explain the concept of pre-processor commands. 7M
b) Write a C Program to Find GCD Using Recursion. 7M
| B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Mechanics - Statics

(Common to CE and ME)
Max. Marks: 70
Time: 4 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) State and prove Varignon's theorem
b) Determine the resultant, both in magnitude and direction, of the four forces acting on the body as shown in Fig.1.

Fig. 1
OR
2. A load of 1500 N is supported at point A by three cables $A B, A C$ and $A D$ as shown in Fig.2. Calculate the tensions induced in each cable.

Fig.2.
3. a) A simply supported beam $A B$ of span 10 m is loaded as shown in Fig.3.Calculate the reactions at A and B.

Fig. 3
b) Determine the support reactions at A and B as shown in Fig.4.

Fig. 4

OR
4. Determine the force in each member of the truss as shown in Fig.5.

Fig. 5
5. a) State the laws of friction.
b) A uniform ladder $A B$ whose weight is 600 N and length 4 m rests against a
smooth vertical wall making with it an angle of 30°. The other end rests on the ground surface. Find the reactions given to the ladder by the wall and the floor
and their inclination to the vertical, when a man weighing 700 N climbs the ground surface. Find the reactions given to the ladder by the wall and the floor
and their inclination to the vertical, when a man weighing 700 N climbs the ladder by a distance 1 m long along the length of the ladder.

OR
6. a) A block of weight $\mathrm{W}_{1}=200 \mathrm{~N}$ rests on a horizontal surface and supports on top of it another block of weight $\mathrm{W}_{2}=50 \mathrm{~N}$. The block W_{2} is attached to a vertical wall by the inclined string $A B$.Find the magnitude of the horizontal force P, applied to the lower block as shown, that will be necessary to cause slipping to impend. The coefficient of static friction for all contact surfaces is $\mu=0.3$ as shown in figure.

Fig. 6
b) Explain the wedge friction by drawing the free body diagrams

UNIT-IV

7. a) Determine the centroid of the shaded area formed by removing a semicircle of diameter 'r 'from a quarter circle of radius'r'.
b) Locate the Centroid of the shaded area bounded by a straight line and a parabola as shown in Fig.7.

Fig. 7

OR
8. a) Derive an expression for the centroid of a semi-circle
b) A uniform lamina shown in Fig.8. consists of a rectangle, a circle and a triangle. Determine the centre of gravity of the lamina. All dimensions are in mm .

Fig. 8
UNIT-V
9 Find the moments of inertia of the I-Section shown in Fig. 9 about the centroidal axes. Also, find the radii of gyration about the same axes.

Fig. 9
OR
10. Find the moments of inertia of the cut section shown in Fig. 10 about the centroidal axes, two semi circular portions are cut from a rectangular plate.

Fig. 10

Code: 7GC11
| B.Tech. I Semester Supplementary Examinations May / June 2019

Technical English \& Professional Communication

(Common to All Branches)
Max. Marks: 70
Time: 4 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Why does E.F.Schumacherstate that modern technology does not enrich man but empties him?
b) Fill in the blanks in the following sentences using the hints given in brackets.
i. He was not happy with her decision. He may \qquad with her. (a word with the prefix dis_)
ii. He enjoys \qquad his friends. (to meet/ meeting)
iii. Good sleep is \qquad to health. (beneficial/benificial)
iv.Rita \qquad from the shock of her uncle's death. (Phrasal verb with 'get')
v. Anything written in a letter after it is signed is known as \qquad . (postscript/postdiction)

OR

2. Discuss the different elements of human communication?

UNIT-II

3. a) What are the main ways in which human development has affected climate patterns on the earth?
b) Write a letter of application in response to an advertisement for the post of Project Manager in a reputed software company.

OR

4. Discuss the different levels of communication.

UNIT-III

5. a) What are the two kinds of technologies currently used to generate solar power on a large scale?
b) Complete the following sentences with appropriate words chosen from those in brackets:
i. How many \qquad are there in each character in MS Word? (bytes/bites)
ii. Students are given an essay about the human \qquad in the exam. (soul/sole)
iii. We saw a \qquad and a tiger when we visited the local zoo.(boar/bore)
iv. Our \qquad took us through the Alps and then on to Italy. (route / root)
v. When it's low \qquad you have to walk a long way before you can swim. (tide/tied)

OR

6. Explain the different types of Non-verbal communication in brief?

UNIT-IV

7. a) What are the measures to be taken to prevent soil erosion?
b) Correct the following sentences
i. The second innings are going on now
ii. Either Ramu or Somu might offer their services.
iii. My friend sits besides me in the class
iv. Each of the candidates were awarded a certificate.
v. One must love his parents.

OR

8. Discuss the different types of listening.

UNIT-V

9. How the idea of 'samskara' is explained in the essay "The Secret of Work"?
10. Write about Linear, Interactive and Transactional communications.
Hall Ticket Number :
Code: 7GC12
| B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Chemistry
 (Common to CE, ME and CSE)

Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)UNIT-I1. a) What are ion exchange resins? Explain the ion exchange method of water softening7M
b) What is hard water? Explain the types of hardness and disadvantage of hard water 7M
OR2. a) Determine the temporary, permanent \& total hardness of a hard water sample containing$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=70.5 \mathrm{mg} / \mathrm{L}, \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=60.5 \mathrm{mg} / \mathrm{L}, \mathrm{MgSO}_{4}=27.6 \mathrm{mg} / \mathrm{L}, \mathrm{CaSO}_{4}=52.1 \mathrm{mg} / \mathrm{L}$.7M
b) Write a note on
(i) Priming and foaming (ii) Scale and sludge formation in boiler 7M
UNIT-II3. a) Describe the construction and working of lithium ion battery7M
b) An electrochemical cell consists of an iron electrode, dipped in 0.1 M FeSO 4 andsilver electrode dipped in $0.05 \mathrm{M} \mathrm{AgNO}_{3}$ solution. Calculate the emf of the cell at298 K . Given SRP of Fe and Ag are -0.44 and +0.8 V respectively.7M
OR4. a) Discuss the different types of conductometric titrations with examples7M
b) Explain the construction and working of Hydrogen-Oxygen fuel cell 7M
UNIT-III5. a) Differentiate between thermoplastics and thermosetting plastics6M
b) Explain the preparation, properties and applications of PVC and PE 8M
OR
6. a) Write a brief note on Vulcanization and compounding of rubber 8M
b) Explain the preparation, properties and applications of polyphosphazenes 6M
UNIT-IV7. a) What are chemical fuels? Give the classification of fuels with examples6Mb) A sample of Coal on analysis was found to contain the following. $\mathrm{C}=85.0 \%, \mathrm{H}_{2}=5.2 \%$,$\mathrm{O}_{2}=4.0 \%, \mathrm{~S}=2.1 \%, \mathrm{~N}_{2}=3.5 \%$, and ash $=0.2 \%$. Calculate the quantity of airrequired for complete combustion of 1 kg of this coal8M
OR
8. Describe the Otto Hoffmann's method of manufacture of metallurgical coke with a neat labelled diagram. How do you recover the byproducts in this method
UNIT-V
9. a) Describe the essential properties of a good refractory material.
b) Discuss the following properties of lubricants (i) Cloud and pour point (ii) Aniline point 6M
OR
10. a) What is cement? Explain with the help of chemical reaction setting and hardening of cement 7M
b) What is Portland cement? Illustrate the manufacture of Portland cement by dry method with a neat labelled diagram of rotary kiln 7M

