Hall Ticket Number :						R-17
Code: 7G512						

I B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mechanics-Statics

(Common to CE & ME)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. Two identical rollers, each of weight 100 N, are supported by an inclined plane and a vertical wall as shown in fig. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C.

14M

2. In the four-bar mechanism ABCD, as shown in fig. below, determine the force P for equilibrium.

14M

3. Compute the axial forces in the members of the plane truss as shown in fig.

14M

1. a) What is a frame? State the difference between a perfect frame and an imperfect frame.

4M

b) A simply supported beam AB is subjected to a distributed load increasing from 1500 N/m to 4500 N/m from end A to end B respectively. The span AB = 6 m. Determine the reactions at the supports.

10M

Code: 7G512

UNIT-III

5. Determine the horizontal force P to start the 400 N wedge moving the right. The angle of friction is 20° to all contact surfaces.

14M

6. a) State the laws of friction.

4M

b) Block-A weighing 1000N rests over block B which weighs 2000N as shown in fig. Block A is tied to wall with a horizontal string. If the coefficient of friction between blocks A and B is 0.25 and between B and floor is 1/3, what should be the value of P to move the block B.

10M

Find the centroid of the I-section shown in fig.

14M

8. In a steel cylinder with a 20cm base diameter and a 30cm height, a vertical hole of 4cm base diameter is drilled upto half the depth from the top and the portion is filled with lead, whose density is 11370 kg/m³. Determine the centre of mass of the composite body. Take the density of steel as 7850 kg/m³.

14M

9. Find the moment of inertia for the in the figure. 4 Find the moment of inertia for the hatched area parallel to centroidal x – axis.

14M

10. A brass cone with base diameter of 400 mm and height of 225 mm is placed on a vertical aluminium cylinder of height 300 mm and diameter 400 mm. Density of brass = 85kN/m³ and density of aluminium =25.6 kN/m³. Determine the mass moment of inertia of the composite body about the vertical geometrical axis.

14M

		Hall Ticket Number : P 17							
	C	R-17							
		I B.Tech. I Semester Supplementary Examinations August 2021							
		Engineering Chemistry							
	٨	(Common to CE, ME & CSE) Nax. Marks: 70 Time: 3 Ho	ıırc						
		Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Mark	_						
		******	,						
		UNIT-I							
1.	a)	Write short notes on							
		i) Scale and sludgeii) Caustic embrittlement	7						
	b)	Discuss in brief the boiler corrosion. How is it controlled?	7						
	-,	OR	•						
2.		What are ionic exchange resins? Explain the ion-exchange method of softening water. Write	4.4						
		reactions involved. Discuss the advantages of this method UNIT-II	14						
3.	a)	What is the principle underlying conductometric titration? Discuss the titration curve obtained for							
۶.	a)	a titration between HCl and NaOH.	7						
	b)	Explain the construction and working of H2-O2 fuel cell with neat sketch and chemical reactions	7						
	,	OR							
4.	a)	On what factors does the conductance of a solution depend? How would you proceed to determine the conductivity of a solution?							
	b)	Explain passivity of metals. How it affects rate of corrosion	7						
		UNIT-III							
5.	a)	Explain the differences between thermoplastics and thermosetting plastics with examples	7						
	b)	Write a brief note on Vulcanization and compounding of rubber	7						
_		OR							
3.	a)	Why silicones are called inorganic polymers? Discuss the synthesis of linear and cross linked silicones.	7						
	b)	Describe the preparation, properties and engineering applications of Buna-N rubber	7						
		UNIT-IV							
7.	a)	Define net and gross calorific values of a fuel. How are they determined experimentally for							
		solid fuels?	7						
	b)	A sample of Coal on analysis was found to contain the following. $C = 73.0 \%$, $H_2 = 3.2 \%$,							

8.

9.

10.

a)

b)

a)

b)

Explain the following

b) Write functions of lubricants

i) Natural gas ii) Water gas iii) Biogas

Describe the mechanism of extreme pressure lubrication

Explain the measurement and significance of the following properties of lubricant (i) Viscosity

a) What is the significance of flash & fire point, cloud & pour point of a good lubricant?

Write a note on synthesis of petrol from Fischer Tropsch's synthesis.

(iii) Neutralization Number (ii) Aniline point

UNIT-V

OR

7M

7M

7M

7M

5M

9M

Hall Ticket Number:	
R-17	
, ,	
(Common to CE & ME)	
Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Mark ********	(S)
UNIT-I	
Construct a Hyperbola, when the distance of the focus from the directrix is equal to	
35mm from the directrix	1
OR	
Draw an Arc passing through any Three points, which are not in a straight line.	-
Construct a regular Hexagon of given side 30mm.	-
UNIT-II	
Draw an epicycloid of a circle of 40mm diameter, which rolls outside on another circle of	
point 95mm from the centre of the directing circle.	14
OR	
· · · · · · · · · · · · · · · · · · ·	14
normal to the curve at somm from the centre of circle.	14
UNIT-III	
A line AB of length 50mm is parallel to both the H.P. and V.P. The line is 25mm above H.P.	
and 25mm in front of V.P. Draw its projections.	1
OR A line AR 55mm long has its and A 25mm in front of the V.P. and in the H.P. The line is	
	1
• •	
UNIT-IV	
A circular plane of diameter 50mm is perpendicular to both H.P. and V.P. Draw its	
• •	1
Draw the projections of a circle of 50mm diameter, having its plane vertical and inclined at	
30° to the VP. Its centre is 30mm above the HP and 20mm in front of the VP.	1
UNIT-V	
45° with the VP.	1
OR	
A hexagonal prism of base 25mm side and height 65mm has its axis inclined at 45° to the	
	1
	I B.Tech. I Semester Supplementary Examinations August 2021 Engineering Graphics-I (Common to CE & ME) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark) WINIT-I Construct a Hyperbola, when the distance of the focus from the directrix is equal to 50mm and eccentricity is 3/2. Also draw a tangent and normal to the curve at a point 35mm from the directrix OR Draw an Arc passing through any Three points, which are not in a straight line. Construct a regular Hexagon of given side 30mm. UNIT-II Draw an epicycloid of a circle of 40mm diameter, which rolls outside on another circle of 120mm diameter for one revolution clockwise. Draw a tangent and a normal to it at a point 95mm from the centre of the directing circle. OR Draw an Involute of a circle of diameter 40mm in clockwise. Also draw a tangent and normal to the curve at 90mm from the centre of circle. UNIT-III A line AB of length 50mm is parallel to both the H.P. and V.P. The line is 25mm above H.P. and 25mm in front of V.P. Draw its projections. OR A line AB, 55mm long has its end A 25mm in front of the V.P and in the H.P. The line is inclined at 45° to the V.P. Draw the projections OR Draw the projections of a circle of 50mm diameter, having its plane vertical and inclined at 30° to the VP. Its centre is 30mm above the HP and 20mm in front of the VP. UNIT-V Draw the projection of cone, base 40mm diameter and axis 65mm long, when it is resting on the ground on a point on its base circle with the axis making an angle of 30° with the HP and 45° with the VP. OR

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Hall Ticket Number :							
2- de . #0111						R-17	

C	aho	: 7G111	
C	oue	I B.Tech. I Semester Supplementary Examinations August 2021 Problem Solving Techniques and C programming	
		(Common to All Branches)	
Μ		Marks: 70 Marks: 70 Time: 3 Hour onswer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	-S
		UNIT-I	
1.	a)	Describe computer hardware and computer software.	7M
	b)	Define Algorithm. Write an Algorithm to read 20 numbers and print their sum.	7M
		OR	
2.	a)	Discuss briefly about computer languages.	7M
	b)	Explain the software development method in detail.	7M
		UNIT-II	
3.	a)	Describe structure of C program with suitable example.	7M
	b)	Write a program to find out total and average of three subject marks.	7M
		OR	
4.	a)	What is conditional operator? Write a program to enter two numbers and find the smallest out of them. Use conditional operator.	7M
	b)	Explain in detail about C data types.	7M
		UNIT-III	
5.	a)	With Examples, explain while, do while and for loops	6M
	b)	Write a program to find out whether the given number is perfect number or not.	8M
		OR	
6.		Write a program to generate prime numbers between 1 and 1000. (use break statement to reduce number of iterations)	14M
		UNIT-IV	
7.	a)	What is an array? How is one dimensional array declared and initialized?	7M
	b)	Write a program to find the sum of all elements in an array.	7M
		OR	
8.	a)	Discuss all string handling functions in C Language.	7M
	b)	Write a program to find whether a given string is palindrome or not.	7M
		UNIT-V	
9.		Explain different storage classes with examples	14M
		OR	
10.	a)	Explain the differences between call by value and call by reference with examples.	8M
	b)	What is recursive function? Write a program to find factorial of integer value using recursive function.	6M

	Hall Ticket Number :								
	R-17								
	I B.Tech. I Semester Supplementary Examinations August 2021								
	Engineering Mathematics-I								
٨	(Common to All Branches) Max. Marks: 70 Time: 3 Ho	urc							
	Answer any five full questions by choosing one question from each unit ($5x14 = 70$ Mark								

a)	Find the solutions of the system of equations: x+2y-z=0, 2x+y+z=0, x-4y+5z=0	7M							
b)									
	vector X then \int_{-1}^{-1} is an eigen value of A-I and corresponding eigen vector X itself.	7M							
,	OR								
a) b)	Solve the equations $x+2y+3z=0$, $3x+4y+4z=0$, $7x+10y+12z=0$	7M							
b)	Find the eigen values and eigen vectors of $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$								
		7M							
a)	Define a model matrix, Diagonalize the Matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$								
		7M							
b)	Show that A = $\begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a skew-Hermitian matrix and also unitary matrix								
-,	$\begin{bmatrix} 0 & i & 0 \end{bmatrix}$	7M							
	OR								
	Reduce the quadratic form $-3x_1^2 - 3x_2^2 - 3x_3^2 - 2x_1x_2 - 2x_1x_3 + 2x_2x_3$ to the canonical form.	4 414							
	Find Index and Signature. UNIT-III	14M							
	•								
a)	Solve $(1+y^2) + (x-e^{\tan^{-i}y})\frac{dy}{dx} = 0$	7M							
b)	If 30% of a radioactive substance disappears in 10 days, how long will it take for 90% of it to	7 1 1							
	disappear?	7M							
	OR dv								
a)	Solve $\frac{dy}{dx} + y \tan x = y^2 \sec x$								
	***	7M							
b)	Find the Orthogonal Trajectories of the family of curves $x^2 + y^2 = a^2$ UNIT-IV	7M							
a)	Solve $(D^2 + 1)y = \sin x \sin 2x + e^x x^2$								
		7M							
b)	Solve $\frac{d^2y}{dx^2} + y = \cos ec \ x$ by the method of variation of parameters.								
	ax OR	7M							
3)	Solve by the method of variation of parameters $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$								
a)	Solve by the method of variation of parameters $\frac{dx^2}{dx^2} - 2\frac{dx}{dx} = e^{-\sin x}$	7M							
b)	Solve $(D+2)(D-1)^2$ $y = e^{-2x} + 2\sinh x$	7M							
	UNIT-V								
a)	If $x = r \sin_{\pi} \cos \theta$, $y = r \sin_{\pi} \sin \theta$, $z = r \cos_{\pi}$, Show that $\frac{\partial (x, y, z)}{\partial (r, y, \theta)} = r^2 \sin_{\pi} \theta$								
b)	(/ " /)	7M							
b)	Find the maxima and minima of $z = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$ OR	7M							

A rectangular box open at the top is to have volume of 32 cubic ft. find the dimensions of the

box requiring least material for its construction.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Page **1** of **1**

14M