, oq	e: 7G311 R-17										
.00	I B.Tech. I Semester Supplementary Examinations March/April 2023										
	Fundamentals of Electrical & Electronics Engineering										
	(Common to EEE & ECE)										
	ax. Marks: 70 Time: 3 Hours										
Ai	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)										
	UNIT–I										
a)											
Ŀ	i) Resistor ii) Inductor iii) Capacitor										
b)	Differentiate ideal and practical voltage source. OR										
	Classify the types of sources and explain their properties with neat circuit diagrams.	1									
a)											
b)	Find the current 'I' using Kirchoffs Current Law (KCL)										
	6 2										
	$12V \begin{pmatrix} + \\ - \end{pmatrix}$ $I \neq 3$ $(\downarrow) 4A$										
	OR										
a)											
b)											
	$10V \frac{+}{-}$ 5 $6 \ge$										
	$10V - 7$ $6 \geq$										
	UNIT–III										
a)											
b)											
-)	OR										
a)											
b)	Define the following i) cut in voltage(V_c) ii) Static resistance iii) Dynamic Resistance										
a)	List the merits and demerits of LC filter.										
,											
b)	OPING THE expression for hpple factor and enclency for hall wave and full wave rectifiers.										
	A half wave rectifier circuit is supplied from a 230V,50 Hz supply with a step down ratio										
	of 3:1 to a resistive load of 10k. The diode forward resistance is 75 while the										
	transformer secondary resistance is 10 . Calculate maximum, average, RMS values of										
	current, DC output voltage, effiency of rectification and ripple factor.										
	With post diagram explain the various current components of NPN transister										
a) b)											
b)	Derive the relation between and OR										
	Explain the operation of function generator with neat diagram.										

	C	ode: 7G111 R-1	7										
	C	I B.Tech. I Semester Supplementary Examinations March/April 2023 Problem Solving Techniques and C Programming (Common to All Branches)	3										
		Max. Marks: 70 Inswer any five full questions by choosing one question from each unit (5x14 = 70 M *********											
		UNIT–I	Marks										
1.	a)												
	b)	List and explain various symbols used in flowcharts with figures OR	7M										
2.	a)	Discuss about different computer languages with examples.											
	b)												
3.	a)	suitable programming example.											
	b)	(i) a*(3+b)/2-c++ *b where a=3,b=4 and c=5 (ii) !(4+5*0>=6-4)											
4.	a)	OR What is the need of explicit type conversion in C? How to cast the data?											
	b)	What is the need of escape sequence? Write a sample program to illustrate escape sequences.	7M 7M										
		UNIT–III											
5.	a)	Give the control flow diagram of the for loop. How is the execution of 'for' loop proceeds?	7M										
	b)	Write a C program to find biggest of three integer numbers.	7M										
5.	a)	OR Explain counter-controlled and c ondition-controlled loops with examples.	7M										
	b)	Write a C program to find the sum of first and last digit of a number	7M										
		UNIT-IV	7 101										
7.	a)												
	b)	Write a C program to accept 3x3 matrix and display elements of the matrix. OR	7M										
3.	a)	Explain any five string manipulation functions with example											
	b)	Write a program to find highest and smallest number in the given array.											
9.	a)	Write a C program to exchange the value of two integers using call by reference.	7M										
	b)	Write a c program to find factorial of a number using recursive function OR	7M										
D.	a)	Define scope. Briefly explain the scope, life time and visibility of Identifier.	7M										

	Hall Ticket Number :												[]
	Code: 7GC14		1	I	1		1		I			L	R-17
	I B.Tech. I Semester Supplementary Examinations March/April 2023 Engineering Mathematics-I												
				-		ng N on to							
	Max. Marks: 70 Answer any five full qu	estic				ng oi					each	unit (Time: 3 Hours 5x14 = 70 Marks)
					Γ								
1.	Define the rank of th $\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$	e ma	atrix a	and f	ind th		IIT–I nk of	the	follov	wing r	matri	ix	
	$\begin{bmatrix} 8 & 4 & -3 & -1 \end{bmatrix}$					c	DR						
2.	Investigate the values	s of	} an	d ~ s	so tha			ation	S				
	2x+3y+5z=9, $7x+3y-2z=8$, $2x+3y+3z=~$, have (i) no solution, (ii) a unique solution												
	and (iii) an infinite nu	mbe	r of s	olutio	ons.								
3.	Show that the matrix					UN	IIT–II						
	$\begin{bmatrix} i & 0 & 0 \end{bmatrix}$												
	$\begin{bmatrix} 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is Skew-Hermitian and hence find eigen values												
							DR						
4.	Find the transformati sum of squares	on th	nat w	ill tra	insfo	rm 10	$0x^{2} +$	$-2y^2$	+5z	$^{2} + 6$	<i>yz</i> −1	10zx - d	4xy into a
						UN	IT–II						
5.	Solve $(1 + y^2)dx =$	(tan	⁻¹ y	-x	dy								
0						C	DR						
6.	Solve $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right)$	$\left(\frac{dx}{dy}\right)$	=1										
7	In I C P aircuit th	o ob	orao	~ •			IT–IV		onde	nnor	io	aivon	by Solvo
7.	In L-C-R circuit, the d^2a data												
	$L\frac{d^2q}{dt^2} - \frac{dq}{dt} + \frac{q}{C} = E \operatorname{si}$ current <i>i</i>	n <i>pt</i>	the	circu	iit is	turn	ed to	o res	onar	nce s	o th	at $\frac{P}{LC}$. Find the
						C	DR						
8.	Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y$	y = x	$e^{3x} + a$	sin 2.	x								
9.	If $x + y + z = u, y + z =$	= <i>uv</i> ,	$z = u^{2}$	vw,tł	ien et		$\frac{\mathbf{IT} - \mathbf{V}}{te \frac{\partial(\mathbf{I})}{\partial(\mathbf{I})}}$:) /)				
						C	DR						
10.	Verify Langrange's m	ean	value	e the	orem		f(x **) = 1	og _e	x in	[1,	<i>e</i>]	
													_

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 7GC13

I B.Tech. I Semester Supplementary Examinations March/April 2023

Engineering Physics

(Common to EEE & ECE)

Max. Marks: 70

Time: 3 Hours

R-17

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT–I

1. Define interference and derive the expression for diameter of nth Newton's ring.

OR

- 2. a) Recite the ruby laser for production of laser
 - b) Explain any four applications of LASER.

UNIT–II

- 3. a) Show Bragg's law as 2d Sin = n
 - b) What is space lattice and draw Bravias lattices

OR

- 4. a) Draw the plane of miller indices of (111) and (121)
 - b) Drive the expression for inter planar separation

UNIT-III

5. State de-Broglie hypothesis of dual nature and derive its wavelength

OR

- 6. a) Define conductivity and drive its equation for metals
 - b) Distinguish metals, semiconductors and insulators

UNIT-IV

- 7. a) Brief Joshepson's effect with types
 - b) Explain the diamagnetic nature of superconductors by Meissner's effect

OR

- 8. a) Derive Hall voltage and justify its importance
 - b) Brief BCS theory and Flux quantization

UNIT-V

- 9. a) Brief the basic principles of nano materials
 - b) Explain the synthesis of nano materials by sol-gel method

OR

- 10. a) classify the ferromagnetics by hysteresis property
 - b) Narrate the importance of nano materials by basic principles