Code: 7G311

| B.Tech. I Semester Supplementary Examinations May / June 2019

Fundamentals of Electrical \& Electronics Engineering

 (Common to EEE \& ECE)Max. Marks: 70
Time: 4 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Write note on different types of capacitors and inductors.
b) Write note on voltage and current relationship for capacitor, inductor and resistor when DC is applied with neat diagram.

OR

2. a) Write note on different types of resistors.
b) Determine the color coding for the following resistors.
i) 100
ii) 330
iii) 4.7 K
iv) 100 K

UNIT-II

3. a) State and explain Kirchoff's laws.
b) State and explain Thevenin's Theorem.

OR

4. a) Find $\mathrm{V}_{T H}, \mathrm{R}_{T H}$ and the load current flowing through the load resistor R_{L} in the figure shown by using Thevenin's Theorem.

b) State and explain Superposition Theorem. 4M

UNIT-III

5. a) Explain zener and avalanche break down. Which break down is dangerous? Why? 7M
b) Construct zener diode voltage regulator which gives constant 3.6 Volts DC . 7M

OR
6. a) Explain V-I characteristics of P-N junction diode in forward and reverse bias conditions.
b) Explain energy band diagram of intrinsic and extrinsic semiconductors with neat
diagram.

UNIT-IV

7. a) Explain the working of center tapped full wave rectifier with neat diagram. Derive the
expression for ripple factor and efficiency.
b) Compare capacitor, LC and π filters and write down their merits and demerits 6 M

OR
8. a) Compare half wave, full wave and bridge rectifiers in terms of ripple factor and efficiency.
b) Explain working principle of filters in $A C$ to $D C$ converter circuits. Explain their
necessity.

UNIT-V
9. a) Explain construction on NPN transistor and write its current components.
b) Draw and explain input and output characteristics of transistor in CE configuration. 7M

OR
10. a) Write note on DSO 7M
b) Draw and explain input and output characteristics of a transistor in CB configuration. 7M

Code: 7GC14

| B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Mathematics-I

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Reduce the matrix $A=\left[\begin{array}{cccc}1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0\end{array}\right]$ into its Echelon form and hence find its rank.
b) Test for Consistency of the following equations and if possible find the solution $2 x+2 y+4 z=18 ; \quad x+3 y+2 z=13 ; \quad 3 x+y+3 z=14$.

OR

2. a) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find its inverse.
3. a) Reduce the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ into canonical form and also write the nature of the quadratic form.
b) Show that $B=\left[\begin{array}{cc}3 i & 2+i \\ -2+i & -i\end{array}\right]$ is Skew-Hermitian. Find its Eigen values.

OR

4. a) Find a matrix P which diagonalizes the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$. Verify that $P^{-1} A P=D$.
b) Prove that the Eigen values of Hermitian matrix A are real.

UNIT-III

5. a) Solve $\sec ^{2} y \frac{d y}{d x}+x \tan y=x^{3}$.
b) Find the orthogonal trajectory of the cardioids $r=a(1-\cos \theta)$.
6. a) Solve $\frac{d y}{d x}+\frac{y \log y}{x-\log y}=0$.
b) Radium disintegrates at a rate proportional to its mass.When mass is 10 mgm , the rate of disintegration is 0.051 mgm per day. How long will it take for the mass to be reduced to 10 to 5 mgm ?

UNIT-IV

7. a) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$.
b) Solve the following ODE by the method of variation of parameters:
$\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$.

OR

8. a) Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$.
b) The damped LCR circuit is governed by the equation $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=0$ where L, R, C ate positive constants. Find the conditions under which the circuit is over damped, under damped and critically damped.

UNIT-V

9. a) Verify Lagrange's Mean value theorem for $f(x)=(x-1)(x-2)(x-3)$ in $[0,4]$
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$, given that $x y z=a^{3}$.

OR

10. a) Determine whether the following functions are functionally dependent or not. If functionally dependent, find the functional relation between them:

$$
u=\sin ^{-1} x+\sin ^{-1} y, \quad v=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}} .
$$

b) Find the maximum and minimum values of $f(x, y)=x^{3}+y^{3}-3 a x y$.

Hall Ticket Number :

R-17

Code: 7G111

I B.Tech. I Semester Supplementary Examinations May / June 2019 Problem Solving Techniques and C Programming (Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the various problem solving strategies with example. 7M
b) Write an algorithm to find the greatest number among 3 numbers 7M

OR

2. a) Differentiate between high level and low level language with example 7M
b) What do you mean by error in a program? Explain the strategies to handle the error. 7M

UNIT-II

3. a) Classify the operators in "C" with example.
b) Explain the structure of a C program with an example. 7M

OR

4. a) Explain the primitive data types of C with example. 8M
b) Explain type conversion in c 6 M
UNIT-III
5. a) Write a C program to illustrate the working of jump statements break and continue 8 M
b) Explain the "nested if "concept of C by an example. 6M

OR
6. a) Write a C Program to Display Fibonacci Sequence of 8 numbers 7M
b) Write the concept of "do while" and "while". When to use do while in a
program explain with an appropriate example.

UNIT-IV
7. a) Write a C Program to Find the Frequency of Characters in a String 7M
b) Explain the applications of String with suitable example. 7M

OR
8. a) Write a program to find the smallest number of an integer array. $A=\{34,45,6$, $\quad 7 \mathrm{M}$
$7,89\}$
b) Write a C Program to Copy String Without Using strcpy() 7M UNIT-V
9. a) Explain various type of qualifiers in C language. Write the importance of
"Static" key word.
b) Write a program using function to design an arithmetical calculator. 7M

OR
10. a) Explain the concept of pre-processor commands. 7M
b) Write a C Program to Find GCD Using Recursion. 7M

Code: 7GC11
| B.Tech. I Semester Supplementary Examinations May / June 2019

Technical English \& Professional Communication

(Common to All Branches)
Max. Marks: 70
Time: 4 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Why does E.F.Schumacherstate that modern technology does not enrich man but empties him?
b) Fill in the blanks in the following sentences using the hints given in brackets.
i. He was not happy with her decision. He may \qquad with her. (a word with the prefix dis_)
ii. He enjoys \qquad his friends. (to meet/ meeting)
iii. Good sleep is \qquad to health. (beneficial/benificial)
iv.Rita \qquad from the shock of her uncle's death. (Phrasal verb with 'get')
v. Anything written in a letter after it is signed is known as \qquad . (postscript/postdiction)

OR

2. Discuss the different elements of human communication?

UNIT-II

3. a) What are the main ways in which human development has affected climate patterns on the earth?
b) Write a letter of application in response to an advertisement for the post of Project Manager in a reputed software company.

OR

4. Discuss the different levels of communication.

UNIT-III

5. a) What are the two kinds of technologies currently used to generate solar power on a large scale?
b) Complete the following sentences with appropriate words chosen from those in brackets:
i. How many \qquad are there in each character in MS Word? (bytes/bites)
ii. Students are given an essay about the human \qquad in the exam. (soul/sole)
iii. We saw a \qquad and a tiger when we visited the local zoo.(boar/bore)
iv. Our \qquad took us through the Alps and then on to Italy. (route / root)
v. When it's low \qquad you have to walk a long way before you can swim. (tide/tied)

OR

6. Explain the different types of Non-verbal communication in brief?

UNIT-IV

7. a) What are the measures to be taken to prevent soil erosion?
b) Correct the following sentences
i. The second innings are going on now
ii. Either Ramu or Somu might offer their services.
iii. My friend sits besides me in the class
iv. Each of the candidates were awarded a certificate.
v. One must love his parents.

OR

8. Discuss the different types of listening.

UNIT-V

9. How the idea of 'samskara' is explained in the essay "The Secret of Work"?
10. Write about Linear, Interactive and Transactional communications.
\square

Code: 7GC13

I B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Physics

(Common to EEE and ECE)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is meant by acceptance angle for an optical fiber? Obtain mathematical expression for acceptance angle and numerical aperture.
b) Write some differences between step index fiber and graded index fiber. 6M

OR
2. a) Explain construction and working of $\mathrm{He}-\mathrm{Ne}$ laser
b) Write some differences between Spontaneous emission and Stimulated emission of radiation.

UNIT-II

3. a) Describe with suitable diagram, the powder method for determination of crystal structure.
b) A beam of X -rays is incident on a NaCl crystal with lattice spacing 0.282 nm . Calculate the maximum order of diffraction possible if wavelength of X-rays used is $0.841^{\circ} \mathrm{A}$.

OR

4. a) Discuss various non-destructive testing systems which are commonly adopted in industries using ultrasonics.
b) Explain the ultrasonic flaw detector. 7M

UNIT-III
5. a) Apply Schrodinger's wave equation to the case of particle confined in a box and show that the energies of particle are quantized.
b) The minimum energy for a particle entrapped in a one dimensional box is $3.2 \times 10^{-18} \mathrm{~J}$. What are the next three energies in electron volts the particle can have..

OR

6. a) Describe the salient features of Kronig-Penny model.
b) Explain Fermi- Dirac distribution function of electron. 6 M
UNIT-IV
7. a) Write a note on direct band gap and indirect band gap semiconductors.
b) Distinguish between intrinsic semiconductor and extrinsic semiconductor. 6 M
OR
8. a) What are Cooper pairs? Explain8M
b) Write a note on the applications of superconductors. 6M
UNIT-V
9. a) Explain hysteresis loop observed in ferromagnetic materials.
b) A magnetic material has a magnetization of $3300 \mathrm{~A} / \mathrm{m}$ and flux density of $0.0044 \mathrm{~W} / \mathrm{m}^{2}$. Calculate the magnetizing field strength. 4M
OR
10. a) Explain in detail various properties of nanomaterials. 8M
b) Write some optical applications of nanomaterials. 6M
