Hall Ticket Number :
Code: 7G311 R-17| B.Tech. I Semester Supplementary Examinations December 2022
Fundamentals of Electrical \& Electronics Engineering
(Common to EEE \& ECE)
Time: 3 Hours
Max. Marks: 70
UNIT-IAnswer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)1. Classify the types of resistors. Explain any three types with neat diagram.14M
OR
2. a) What is tolerance? What are the color codes used to indicate the tolerance value and write their range? 7M
b) Differentiate ideal and practical voltage source. 7M
UNIT-II
3. a) State and explain Kirchhoff's laws.7M
b) State and explain super position theorem. 7M
OR4. a) Determine the equivalent capacitance when three capacitors with values $3 F$,4 Fand 6 F are connected in series.7M
b) State and explain Thevenin's theorem. 7M
UNIT-III
5. a) Draw and explain the energy band diagrams of intrinsic and extrinsic semiconductors7M
b) What is mean by avalanche breakdown? Explain. 7M
OR6. a) How a PN junction diode acts as a switch? Explain.6M
b) Write short notes on
i) Junction capacitance
ii) Temperature dependence on V-I characteristics of a PN junction diode.8M
UNIT-IV7. Explain the operation of full wave rectifier with capacitor input filter and derive theexpression for ripple factor.14 M
OR
8. With neat diagrams and wave forms explain the operation of Bridge rectifier and derive the expressions for E_{dc}, I_{dc} 14 M
UNIT-V
9. a) What is DSO? Explain its operation. 7M
b) Compare CB, CE configurations of a transistor. 7M
OR
10. Explain the operation of CRO with neat diagram. 14 M
Hall Ticket Number :
R-17
Code: 7G111
I B.Tech. I Semester Supplementary Examinations December 2022

Problem Solving Techniques and C Programming

Time: 3 Hours
Max. Marks: 70
(Common to All Branches)
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

[^0]
UNIT-I

1. a) Differentiate between computer hardware and software
b) Write an algorithm to find product of two integers using repetitive addition

OR

2. a) Explain in detail about the software development method.
b) List and explain various symbols used in flowcharts with figures

UNIT-II

3. a) Discuss about operator precedence in expression evaluation with a suitable example.
b) Give the format for conditional operator. When is it used?

OR

4. a) Explain different data types supported by C language with their memory requirements.
b) Describe the structure of a C program with example 7M

UNIT-III

5. a) Write a C Program to check weather given number is Amstrong number or not
b) Explain the significance of 'break' and 'continue' statement with a sample program. 7M OR
6. a) Write 'C' program to print the Fibonacci sequence.
b) In what way a do - while loop differs from while loop. Explain.

UNIT-IV

7. a) Write a program to print an array in reverse order
b) Write a C Program to delete ' n ' characters in a given string

OR

8. a) What is an Array? How to declare and initialize a one dimensional array?
b) Explain different string manipulation functions with example 10M

UNIT-V

9. a) What is the scope of variables of type extern, auto, register and static? Explain with example.
b) What is meant by user defined function? Explain with an example C program 4M

OR

10. a) What is a function? What are its advantages? Explain various parameter passing techniques.
b) Write a function that checks whether a given year is leap year or not.

Code: 7GC14

I B.Tech. I Semester Supplementary Examinations December 2022

Engineering Mathematics-I

(Common to all Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

b) Prove that if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots . \lambda_{n}$ are eigen values of A then $\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}, \ldots \ldots . \lambda_{n}^{2}$ are the eigen values of A^{2}.

OR
2. If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ verify Cayley-Hamilton theorem. Find A^{4} and A^{-1} using Cayley-Hamilton.

UNIT-II

3. Show that the matrix $\left[\begin{array}{cc}0 & i \\ i & 0\end{array}\right]$ is Skew-Hermitian and hence find eigen values and eigen vectors.

OR
4. a) Prove that The Eigen values of a Hermitian matrix are all real.
b) Define Hermitian, skew-Hermitian, Unitary Matrices and give example for each

UNIT-III

5. a) A bacterial culture, growing exponentially, increases from 100 to 400 gms in 10 Hrs . How much was present after 3 Hrs. from the initial instant?
b) Find the orthogonal trajectory of the family of confocal conics

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}+\lambda}=1, \text { where } \lambda \text { being the parameter. }
$$

OR
6. Find the orthogonal Trajectories of the family of curves
$x^{2}+y^{2}+2 g x+c=0$ where g is parameter.
UNIT-IV
7. Solve $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=8 x^{2} e^{2 x} \sin 2 x$

OR

8. Using the Method of variation of Parameters, solve $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$

UNIT-V

9. Prove that (if $0<\mathrm{a}<\mathrm{b}<1$), $\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$. Hence show that $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.
b) Verify Lagrange's mean value theorem for $f(x)=(x-1)(x-2)(x-3)$ in $[0,4]$
Hall Ticket Number :
R-17
Code: 7GC13
I B.Tech. I Semester Supplementary Examinations December 2022

Engineering Physics

(Common to EEE \& ECE)Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I1. a) Define interference of light.4M
b) Explain Fraunhoffer diffraction of light at single slit and its intensity distribution. 10M
OR
2. a) Write a note on applications of optical fibers in the field of sensors and medicine. 7M
b) Distinguish between interference and diffraction of light. 7M
UNIT-II
3. Show that FCC crystal is more tightly packed than BCC and SC crystal based on the packing fractions of the corresponding crystals. 14 M
OR4. a) Explain the terms (i) screw and edge dislocations (ii) Burger's vector.10M
b) For a simple cubic lattice find the ratios of interplanar separation $\mathrm{d}_{111}: \mathrm{d}_{110}: \mathrm{d}_{100}$ 4M
UNIT-III5. a) Calculate the wavelength associated with electron with energy 2000 eV .7M
b) Distinguish between classical free electron theory and quantum free electron theory of metals. 7M
OR
6. a) Develop Schroendinger's time dependent wave equation. 9M
b) State and explain Heisenberg's uncertainty principle. 5M
UNIT-IV
7. Define magnetic dipole moment. List out various sources of magnetic dipole moment in magnetic materials. 14M
OR
8. a) Illustrate the intrinsic and extrinsic form of semiconductors and construct covalent and energy band diagrams. 7M
b) Express the working principle of pn junction diode with neat diagram. 7M
UNIT-V
9. a) Give an account of BCS theory of super conductivity. 9M
b) What are nano materials? Write the significance of nano scale. 5M
OR
10. a) Mention the significance of penetration depth in superconductors. 9M
b) Explain properties of superconductors. 5M

[^0]: *********

