Code: 7GC14

| B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Mathematics-I

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Reduce the matrix $A=\left[\begin{array}{cccc}1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0\end{array}\right]$ into its Echelon form and hence find its rank.
b) Test for Consistency of the following equations and if possible find the solution $2 x+2 y+4 z=18 ; \quad x+3 y+2 z=13 ; \quad 3 x+y+3 z=14$.

OR

2. a) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find its inverse.
3. a) Reduce the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ into canonical form and also write the nature of the quadratic form.
b) Show that $B=\left[\begin{array}{cc}3 i & 2+i \\ -2+i & -i\end{array}\right]$ is Skew-Hermitian. Find its Eigen values.

OR

4. a) Find a matrix P which diagonalizes the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$. Verify that $P^{-1} A P=D$.
b) Prove that the Eigen values of Hermitian matrix A are real.

UNIT-III

5. a) Solve $\sec ^{2} y \frac{d y}{d x}+x \tan y=x^{3}$.
b) Find the orthogonal trajectory of the cardioids $r=a(1-\cos \theta)$.
6. a) Solve $\frac{d y}{d x}+\frac{y \log y}{x-\log y}=0$.
b) Radium disintegrates at a rate proportional to its mass.When mass is 10 mgm , the rate of disintegration is 0.051 mgm per day. How long will it take for the mass to be reduced to 10 to 5 mgm ?

UNIT-IV

7. a) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$.
b) Solve the following ODE by the method of variation of parameters:
$\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$.

OR

8. a) Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$.
b) The damped LCR circuit is governed by the equation $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=0$ where L, R, C ate positive constants. Find the conditions under which the circuit is over damped, under damped and critically damped.

UNIT-V

9. a) Verify Lagrange's Mean value theorem for $f(x)=(x-1)(x-2)(x-3)$ in $[0,4]$
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$, given that $x y z=a^{3}$.

OR

10. a) Determine whether the following functions are functionally dependent or not. If functionally dependent, find the functional relation between them:

$$
u=\sin ^{-1} x+\sin ^{-1} y, \quad v=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}} .
$$

b) Find the maximum and minimum values of $f(x, y)=x^{3}+y^{3}-3 a x y$.

Hall Ticket Number :

R-17

Code: 7G111

I B.Tech. I Semester Supplementary Examinations May / June 2019 Problem Solving Techniques and C Programming (Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the various problem solving strategies with example. 7M
b) Write an algorithm to find the greatest number among 3 numbers 7M

OR

2. a) Differentiate between high level and low level language with example 7M
b) What do you mean by error in a program? Explain the strategies to handle the error. 7M

UNIT-II

3. a) Classify the operators in "C" with example.
b) Explain the structure of a C program with an example. 7M

OR

4. a) Explain the primitive data types of C with example. 8M
b) Explain type conversion in c 6 M
UNIT-III
5. a) Write a C program to illustrate the working of jump statements break and continue 8 M
b) Explain the "nested if "concept of C by an example. 6M

OR
6. a) Write a C Program to Display Fibonacci Sequence of 8 numbers 7M
b) Write the concept of "do while" and "while". When to use do while in a
program explain with an appropriate example.

UNIT-IV
7. a) Write a C Program to Find the Frequency of Characters in a String 7M
b) Explain the applications of String with suitable example. 7M

OR
8. a) Write a program to find the smallest number of an integer array. $A=\{34,45,6$, $\quad 7 \mathrm{M}$
$7,89\}$
b) Write a C Program to Copy String Without Using strcpy() 7M UNIT-V
9. a) Explain various type of qualifiers in C language. Write the importance of
"Static" key word.
b) Write a program using function to design an arithmetical calculator. 7M

OR
10. a) Explain the concept of pre-processor commands. 7M
b) Write a C Program to Find GCD Using Recursion. 7M

Code: 7GC11
| B.Tech. I Semester Supplementary Examinations May / June 2019

Technical English \& Professional Communication

(Common to All Branches)
Max. Marks: 70
Time: 4 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Why does E.F.Schumacherstate that modern technology does not enrich man but empties him?
b) Fill in the blanks in the following sentences using the hints given in brackets.
i. He was not happy with her decision. He may \qquad with her. (a word with the prefix dis_)
ii. He enjoys \qquad his friends. (to meet/ meeting)
iii. Good sleep is \qquad to health. (beneficial/benificial)
iv.Rita \qquad from the shock of her uncle's death. (Phrasal verb with 'get')
v. Anything written in a letter after it is signed is known as \qquad . (postscript/postdiction)

OR

2. Discuss the different elements of human communication?

UNIT-II

3. a) What are the main ways in which human development has affected climate patterns on the earth?
b) Write a letter of application in response to an advertisement for the post of Project Manager in a reputed software company.

OR

4. Discuss the different levels of communication.

UNIT-III

5. a) What are the two kinds of technologies currently used to generate solar power on a large scale?
b) Complete the following sentences with appropriate words chosen from those in brackets:
i. How many \qquad are there in each character in MS Word? (bytes/bites)
ii. Students are given an essay about the human \qquad in the exam. (soul/sole)
iii. We saw a \qquad and a tiger when we visited the local zoo.(boar/bore)
iv. Our \qquad took us through the Alps and then on to Italy. (route / root)
v. When it's low \qquad you have to walk a long way before you can swim. (tide/tied)

OR

6. Explain the different types of Non-verbal communication in brief?

UNIT-IV

7. a) What are the measures to be taken to prevent soil erosion?
b) Correct the following sentences
i. The second innings are going on now
ii. Either Ramu or Somu might offer their services.
iii. My friend sits besides me in the class
iv. Each of the candidates were awarded a certificate.
v. One must love his parents.

OR

8. Discuss the different types of listening.

UNIT-V

9. How the idea of 'samskara' is explained in the essay "The Secret of Work"?
10. Write about Linear, Interactive and Transactional communications.

Code: 7G513

I B.Tech. I Semester Supplementary Examinations May / June 2019
 Basic Engineering Drawing
 (Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. A fixed point F is 3.5 cm from a fixed straight line. Draw the locus of point P moving in such a way that its distance from the straight line is equal to its distance from F. Name the curve and draw the tangent and normal at any point on the curve.

OR

2. A circus man rides a motor bike inside a globe of 6 m diameter. The motor bike has the wheel of 1 m diameter. Draw the locus of the point on the circumference of the motor bike wheel for one complete revolution. Adopt suitable scale.

UNIT-II

3. One end P of a line $P Q, 55 \mathrm{~mm}$ long is 35 mm in front of VP and 25 mm above HP . The line is inclined at 40° to HP and 30° to VP. Draw the projections of PQ.

OR

4. The top view of a 75 mm long line $A B$ measure 65 mm while the length of its front view is 50 mm . Its one end A is in H.P and 12 mm in front of the V.P. Draw the projections of $A B$ and determine its inclinations with the H.P and the V.P

UNIT-III

5. A square lamina PQRS of side 40 mm is resting on the ground on its corner P in such way that the diagonal PR is inclined at 45° to HP and apparently inclined at 30° to the VP. Draw its projections.

OR

6. A hexagonal plate of side 30 mm is resting on one of its sides on VP and inclined at 40° to HP . Its surface is inclined at 35° to VP. Draw its projections.

UNIT-IV

7. A pentagonal prism of base side 30 mm and axis length 60 mm is resting on HP on one of its base corners with its axis inclined at 45° to HP and parallel to VP. Draw its projections when the base sides containing the resting corners are equally inclined to HP.

OR

8. A cone of base diameter 40 mm and axis length 50 mm is resting on VP on a point on the circumference of the base with its base inclined at 30° to VP and parallel to HP. Draw its projections.

UNIT-V

9. A cylinder of base 50 mm diameter and 75 mm long is lying on the HP. Draw its isometric projection when the axis is horizontal.

OR

10. Draw the three possible orthographic views of the object shown in figure.

Hall Ticket Number :
Code: 7GC12
| B.Tech. I Semester Supplementary Examinations May / June 2019

Engineering Chemistry
 (Common to CE, ME and CSE)

Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)UNIT-I1. a) What are ion exchange resins? Explain the ion exchange method of water softening7M
b) What is hard water? Explain the types of hardness and disadvantage of hard water 7M
OR2. a) Determine the temporary, permanent \& total hardness of a hard water sample containing$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=70.5 \mathrm{mg} / \mathrm{L}, \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=60.5 \mathrm{mg} / \mathrm{L}, \mathrm{MgSO}_{4}=27.6 \mathrm{mg} / \mathrm{L}, \mathrm{CaSO}_{4}=52.1 \mathrm{mg} / \mathrm{L}$.7M
b) Write a note on
(i) Priming and foaming (ii) Scale and sludge formation in boiler 7M
UNIT-II3. a) Describe the construction and working of lithium ion battery7M
b) An electrochemical cell consists of an iron electrode, dipped in 0.1 M FeSO 4 andsilver electrode dipped in $0.05 \mathrm{M} \mathrm{AgNO}_{3}$ solution. Calculate the emf of the cell at298 K . Given SRP of Fe and Ag are -0.44 and +0.8 V respectively.7M
OR4. a) Discuss the different types of conductometric titrations with examples7M
b) Explain the construction and working of Hydrogen-Oxygen fuel cell 7M
UNIT-III5. a) Differentiate between thermoplastics and thermosetting plastics6M
b) Explain the preparation, properties and applications of PVC and PE 8M
OR
6. a) Write a brief note on Vulcanization and compounding of rubber 8M
b) Explain the preparation, properties and applications of polyphosphazenes 6M
UNIT-IV7. a) What are chemical fuels? Give the classification of fuels with examples6Mb) A sample of Coal on analysis was found to contain the following. $\mathrm{C}=85.0 \%, \mathrm{H}_{2}=5.2 \%$,$\mathrm{O}_{2}=4.0 \%, \mathrm{~S}=2.1 \%, \mathrm{~N}_{2}=3.5 \%$, and ash $=0.2 \%$. Calculate the quantity of airrequired for complete combustion of 1 kg of this coal8M
OR
8. Describe the Otto Hoffmann's method of manufacture of metallurgical coke with a neat labelled diagram. How do you recover the byproducts in this method
UNIT-V
9. a) Describe the essential properties of a good refractory material.
b) Discuss the following properties of lubricants (i) Cloud and pour point (ii) Aniline point 6M
OR
10. a) What is cement? Explain with the help of chemical reaction setting and hardening of cement 7M
b) What is Portland cement? Illustrate the manufacture of Portland cement by dry method with a neat labelled diagram of rotary kiln 7M

