Į		Il Ticket Number : R-17										
	Coc	le: 7GC12 I B.Tech. I Semester Supplementary Examinations December 2022										
		Engineering Chemistry										
		(Common to CE, ME & CSE)										
	Mc	ax. Marks: 70 Time: 3 Ho	Urs									
	Ans	swer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Mar})$	ks)									
	a) Differentiate temporary and permanent hardness of water.											
•	с, b)	What is break point chlorination? State its significance?	71 71									
	2)	OR										
2.	a) Describe the desalination process by reverse osmosis with a neat sketch.											
	b)	Write a note on internal treatment?	71 71									
	2)											
		UNIT–II										
3.		Explain the composition ,applications and advantages of the following cells										
		(i)Ni-Cd cell & (ii) Lithium ion cell.	14									
		OR										
ŀ.	a)	What is concentration cell corrosion and galvanic corrosion?	71									
	b)	b) Calculate the standard emf of Ni-Ag cell whose E^0 _{Ni} and E^0 _{Ag} are -0.25 and +0.83										
		respectively also write cell representation.	71									
		UNIT–III										
5.	a)	a) Write a note on vulcanization of rubber.										
	b)	 explain the synthesis, mechanism and applications of carbohydrates 										
	OR											
ò.	a)	Write a note on compounding of rubber?	71									
	b)	Explain with examples the terms: addition polymerization, condensation polymerization										
		and co-polymerization.	71									
		UNIT-IV										
.	a)	What is meant by power alcohol? Write the preparation and properties of power										
		alcohol.	71									
	b)	, , , , , , , , , , , , , , , , , , , ,										
		OR										
3.	a)	Write a note on production and uses of producer gas, water gas and Bio gas.	71									
	b) Define knocking? Write about octane number?											
		UNIT-V										
).		Explain the mechanism of (i) thin film lubrication, (ii) thick film lubrication	14									
••		OR	1-11									
).	a)	What are lubricants? Write any three properties and applications of lubricants.	7									
•	b)	What are refractories? Discuss any three properties of refractories?	71									
	5)	***	1									

Hall Ticket Number : R-17												
C	oae	I B.Tech. I Semester Supplementary Examinations December 2022										
		Problem Solving Techniques and C Programming										
		(Common to All Branches)										
	-	. Marks: 70 ver any five full questions by choosing one question from each unit (5x14 = 70 Mark ********										
		UNIT–I										
1.	a)	a) Differentiate between computer hardware and software										
	b)											
-	a)	OR Explain in detail about the software development method.										
	b)	List and explain various symbols used in flowcharts with figures	7									
		UNIT–II										
•	a)	Discuss about operator precedence in expression evaluation with a suitable example.	7									
	b)	Give the format for conditional operator. When is it used?	7									
		OR										
•	a)	Explain different data types supported by C language with their memory requirements.	7									
	b)	Describe the structure of a C program with example	7									
		UNIT–III										
•	a)	Write a C Program to check weather given number is Amstrong number or not	7									
	b)	Explain the significance of 'break' and 'continue' statement with a sample program. OR	7									
	a)	Write 'C' program to print the Fibonacci sequence.	7									
	b)	In what way a do – while loop differs from while loop. Explain.										
		UNIT–IV										
•	a)	Write a program to print an array in reverse order	7									
	b)											
	-)	OR										
•	a)	What is an Array? How to declare and initialize a one dimensional array?	4 10									
	b)	D) Explain different string manipulation functions with example UNIT-V										
	a)	What is the scope of variables of type extern, auto, register and static? Explain										
	b)	with example.	10									
	b)	What is meant by user defined function? Explain with an example C program OR	4									
	a)	What is a function? What are its advantages? Explain various parameter passing										
	,	techniques.	10									
	b)	Write a function that checks whether a given year is leap year or not.	4									

	На	all Ticket Number :									
		de: 7G513									
	CU	I B.Tech. I Semester Supplementary Examinations December 2022									
Basic Engineering Drawing											
		(Computer Science and Engineering)									
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)											

1.		UNIT–I The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by Arcs									
••		of circles method	14M								
0											
2.	The major and minor axes of an ellipse are 120mm and 80mm. Draw right half of ellipse by Oblong Method and left side of the ellipse by Concentric Circles Method UNIT-II										
3.		A line AB, 50mm long, has its ends A in both the H.P and the V.P. It is inclined at 30 ^o to the H.P and at 45 ^o to the V.P. Draw the projections OR									
4.		A line AB, 65mm long, has its end A 20mm above the H.P. and 25mm in front of the V.P. The end B is 40mm above the H.P. and 65mm in front of the V.P. Draw the projections of AB and show its inclinations with the H.P.and the V.P. UNIT-III									
5.	a)	A rectangular plane of size 60x30mm is perpendicular to both H.P. and V.P. Draw its projections	7M								
	b)	A pentagonal plane of side 30mm is perpendicular to H.P. and parallel to V.P. The plane is 30mm infront of V.P. Draw its projections OR	7M								
6.		A semicircular plate of 80mm diameter has its straight edge in the VP and inclined at 45° to the HP. The surface of the plate makes an angle of 30° with the VP. Draw its projections									
7.		A square prism, base 40mm side and height 65mm has its axis inclined at 45° to the HP and has an edge of its base, on the HP and inclined at 30° to the VP. Draw its Projections	14M								
0		OR									
8.		Draw the projections of a pentagonal prism, base 25mm side and axis 50mm long, resting on one of its rectangular faces on the HP, with the axis inclined at 45° to the VP	14M								
9.		Draw the front view, Top view and Side view of the following isometric view									
		and the second s									
			14M								

- OR
- Draw the isometric projection of a circular plane of diameter 50mm when the plane is 10. Horizontal ***

14M

	Ha	all Ticket Number :													
	Со	de: 7GC14	JJ	I			1		1			I	R- 1	17	
	I B.Tech. I Semester Supplementary Examinations December 2022														
	Engineering Mathematics-I (Common to all Branches)														
	Max. Marks: 70 Time: 3 Hours														
	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********														
1.	a)	a) Find the eigen values and eigen vectors of $\begin{bmatrix} 5 & 4 \end{bmatrix}$													
											7M				
	b) Prove that if $\{1, 1, 2, 3, \dots, n\}_n$ are eigen values of A then $\{1, 2, 3, 2, 3, \dots, n\}_n^2$ are the eigen values of A ² .											7M			
	OR														
2.	If $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ verify Cayley-Hamilton theorem. Find A ⁴ and A ⁻¹ using Cayley-Hamilton.														
		$\begin{bmatrix} 2 & -2 & 1 \end{bmatrix}$					NIT-I								14M
			[0	i											
3.		Show that the matr	ix i	0 is	Skew	-Her	mitia	n an	d her	nce fi	nd e	igen v	alues and	eigen	
		vectors.	L]											14M
Λ	2)	Prove that The Fig		on of o	Uorn		OR	riv or		rool					
4.	a) b)	Prove that The Eige Define Hermitian, s									exam	ple for	each		7M 7M
	,					UN	IIT–I		-						7 101
5.	a) b)	a) A bacterial culture, growing exponentially, increases from 100 to 400gms in 10 Hrs. How much was present after 3 Hrs. from the initial instant?									7M				
		$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2} + } =$	1, whe	re } t	being	the p	barar	neter							
		$a^{-} b^{-} + \}$					OR								7M
6.		Find the orthogonal	Trajec	tories	of the			curv	es						
		$x^2 + y^2 + 2gx + e$	c = 0 v	vhere	g is p		eter. II T-I								14M
7.		Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} +$	4v = 82	$x^2 e^{2x}$ s	in 2x										
		dx^2 dx	<i>J</i> = -				OR								14M
8.			(-				d^2y		2				
0.		Using the Method c	of variati	on of I	Parar	neter UN	's, sc NIT-N		$\frac{dx^2}{dx^2}$	- y =	1+e	x			14M
9.		Prove that (if 0 <a< td=""><td><b<1),< td=""><td><u>b-</u></td><td>$\frac{a}{a} <$</td><td>tar</td><td>$\mathbf{h}^{-1}\boldsymbol{k}$</td><td>b — 1</td><td>tan</td><td>$a^{-1}a$</td><td>$< \frac{l}{l}$</td><td>$\frac{a}{2}$</td><td>. Hence</td><td>show</td><td></td></b<1),<></td></a<>	<b<1),< td=""><td><u>b-</u></td><td>$\frac{a}{a} <$</td><td>tar</td><td>$\mathbf{h}^{-1}\boldsymbol{k}$</td><td>b — 1</td><td>tan</td><td>$a^{-1}a$</td><td>$< \frac{l}{l}$</td><td>$\frac{a}{2}$</td><td>. Hence</td><td>show</td><td></td></b<1),<>	<u>b-</u>	$\frac{a}{a} <$	tar	$\mathbf{h}^{-1}\boldsymbol{k}$	b — 1	tan	$a^{-1}a$	$< \frac{l}{l}$	$\frac{a}{2}$. Hence	show	
		Prove that (if 0 <a<b<1), <math="">\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}. Hence show</a<b<1),>													
		that $\frac{f}{4} + \frac{3}{25} < 1$	tan ⁻¹	$\frac{4}{3} < \frac{1}{3}$	$\frac{f}{4} +$	$\frac{1}{6}$.									14M
							OR								
10.	a)	Verify Rolle's theore	am for ·	s1n 2	$\frac{\mathcal{K}}{\mathbf{i}}$	n	(0)	f)							
	u)		UTTU	e^{x}	L	ī	(0,	ן נ	•						7M
	b)	Verify Lagrange's n	nean va	lue the	eoren	n for	f(x	\mathbf{r}) = (.	(x-1)	(x -	2)()	(x-3)ir	n [0, 4]		7M
