Code: 19AC11T

| B.Tech. I Semester Supplementary Examinations December 2022

Algebra and Calculus
 (Common to All Branches)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Solve the system of equations

$$
x+3 y+2 z=0,2 x-y+3 z=0,3 x-5 y+4 z=0, x+17 y+4 z=0
$$

OR

2. Find the rank of $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14\end{array}\right]$

UNIT-II

3. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ and hence find A^{-1} using Cayley-Hamilton theorem.

OR

4. Diagonalize the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3\end{array}\right]$

UNIT-III

5. a) Find the first and second partial derivatives of $z=x^{3}+y^{3}-3 a x y$
b) If $z=f(x+c t)+g(x-c t)$ then prove that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$
6. Find the maximum and minimum values of $x^{3}+y^{3}-3 a x y$

UNIT-IV

7. a) Expand $\log _{e} x$ in powers of $(x-1)$
b) Using Maclaurin's series, expand $\sin x$ in powers of x.

OR

8. Trace the curve $y^{2}(a-x)=x^{2}(a+x)$

14 M 44

UNIT-V

9. Evaluate $\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} d y d x$ by changing the order of integration.

OR

10. Evaluate $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{4} \theta d \theta$

Hall Ticket Number :

Code: 19AC13T

R-19

| B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Chemistry of Materials

(Common to CE \& ME)

Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks CO

Hall Ticket Number :

Code: 19A311T

R-19

I B.Tech. I Semester Supplementary Examinations December 2022

Engineering Graphics-I

(Common to CE \& ME)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Construct an ellipse, when the distance of the focus from the directrix is equal to 65 mm and eccentricity is $2 / 3$. Also draw tangent and normal to the curve at a point 40 mm from the directrix.

OR

2. Construct a parabola, when the distance of the focus from the directrix is 50 mm . Also draw tangent on normal to the curve at a point 35 mm from the directrix.

UNIT-II

3. Construct a cycloid having a rolling circle diameter as 50 mm . Draw a normal and a tangent to a curve at a point 35 mm above the base line.

OR

4. Draw a hypocycloid of a circle of 40 mm diameter, which rolls inside another circle of 160 mm diameter, for one revolution counter clockwise. Draw a tangent \& a normal to it at a point 65 mm from the center of the directing circle.

UNIT-III

5. a) A point is 50 mm from both the reference planes. Draw its projections in all possible positions.
b) A point A is 25 mm above the H.P \& 35 mm in front of the V.P. Another point is 40 mm behind the V.P. \& 30 mm below the H.P. Draw the projections of these points taking the distance between the end projectors as 70 mm .

OR

6. The front view of a 75 mm long line measures 55 mm . The line is parallel to the H.P and one of its end is in the V.P and 25 mm above the H.P. Draw the projections of the line and determines its inclination with the V.P.

14M

UNIT-IV

7. A square ABCD of 40 mm side has a corner on the HP and 20 mm in front of the VP. All the sides of the squares are equally inclined to the HP and parallel to the VP. Draw its projections.

OR

8. Draw the projections of a regular hexagon of 25 mm side, having one of its sides in the HP and inclined at 60° to the VP and its surface making an angle of 45° with the HP.

UNIT-V

9. Draw the projections of a hexagonal prism of base 25 mm side and axis 60 mm long, when it is resting on one of its corners of the base on HP. The axis of the solid is inclined at 45° to the HP.

OR

10. A hexagonal pyramid side of base 25 mm and axis 50 mm longs, rests with one of the corners of its base on HP, its axis is inclined at 30° to HP and 45° to VP. Draw its projections.
\square
Hall Ticket Number :

Code: 19A511T

R-19

I B.Tech. I Semester Supplementary Examinations December 2022

Problem Solving and C Programming

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What are identifiers? What are the rules for declaring identifiers? Give example.
b) What is constant? Describe its classification with example
OR
2. What is flowchart? Describe various symbols used in flowcharts and draw flowchart for
reversing the digits of a given number.

UNIT-II

3. a) Explain various iterative statements available in C language with examples. 8M
b) Write a program to find out whether the given number is Armstrong or not? 6M
OR
4. a) What are the limitations of switch () case statement?
b) Write a program to calculate bill of a job work done as follows. Use if else statement.
i. Rate of typing 3 Rs. / page.
ii. Printing of $1^{\text {st }}$ copy 5 Rs. /page \& later every copy 3 Rs. /page.

UNIT-III

5. a) Explain any five string manipulation library functions with examples. 9M
b) What is mean by recursion? Explain the purpose of recursive function. 5 M

OR

6. What is function parameter? Explain different types of parameters in C functions.

UNIT-IV

7. What is dynamic memory allocation? Write and explain the different dynamic memory allocation functions in C .

OR

8. a) What is a pointer? Explain how the pointer variable declared and initialized. 7M
b) Write advantages and disadvantages of pointers

UNIT-V

9. a) Explain how the structure variable passed as a parameter to a function with example.
b) Write a C program to read and display a text from the file. 7M

OR

10. a) What is a self-referential structure? Give an example. 5 M
b) What is a file? Explain how the file open and file close functions
