
	~	ode: 19AC12T	R-19						
	C	I B.Tech. I Semester Supplementary Examinations March/April 2	023	J					
		Applied Physics	020						
		(Common to EEE & ECE)							
			: 3 Ho						
	P	Answer any five full questions by choosing one question from each unit (5x14 = 7	70 Mar	ks)					
			Marks	со					
	、	UNIT-I		004					
1.	a)	Explain constructive and destructive interference of light.	4M	CO1					
	b)	Derive the expression for to determine wavelength of light by newton's rings method.	10M	CO1					
		OR	10101	001					
2	a)	Define polarization of light and mention types of polarized light.	4M	CO1					
	b)	Explain the construction and working of Nicol prism to produce and analyze of							
	- /	plane polarized light.	10M	CO1					
		UNIT-II							
3.		Explain various types of polarizations in dielectrics.	14M	CO2					
		OR		<u> </u>					
4.	a)	Define magnetic dipole moment and intensity of magnetization.	4M	CO2					
	b)	Discuss the origin of magnetic momentum of an atom.	10M	CO2					
	,								
5.	\sim	UNIT-III Explain total internal reflection in optical fiber.	4M	CO3					
5.	a) b)	Classify the optical fibers based on the refractive index of the core material.	10M	CO3					
	0)	OR	TON	005					
6.	a)	Write are the applications of optical fiber.	4M	CO3					
•.	b)	Explain different types of optical fibers based on refractive index, materials and							
	- /	modes of propagation.							
		UNIT–IV							
7.		Derive the expression density of charge carriers for intrinsic semiconductor.	14M	CO4					
- •		OR							
8.	a)	Define Hall effect and derive expression for Hall coefficient.	10M	CO4					
	b)	Mention the applications of Hall effect.	4M	CO4					
a	a)	UNIT-V Define superconductor and write the applications of superconductors.	6M	CO5					
э.	a) b)	Classify the superconductors.	8M	CO5					
	5)	OR	0101	505					
0	a)	Brief the top-down and top-up approaches for synthesis of nanomaterials.	4M	CO5					
	b)	Explain the structure determination of nanomaterials by X-ray diffraction	1111	000					
	~)	technique.	10M	CO5					
		. ***							

Co	pde: 19A411T	19	
	I B.Tech. I Semester Supplementary Examinations March/April 20	023	
	Essentials of Electrical & Electronics Engineering		
	(Common to EEE & ECE)		
	Time Answer any five full questions by choosing one question from each unit (5x14 = 7	: 3 Ho	
1		0 Mai	KS J
		Marks	СО
-	UNIT–I What are the types of resistors? Explain any three with neat diagrams.	14M	CO1
•	OR	14111	001
. a)	-		
,	1) 1000 2) 4700 3) 10K 4) 2M	4M	CO1
b)	Classify the variable resistors and explain any two of them.	10M	CO1
	UNIT–II		
. a)	Find the current through 4 , 1 resisters using current division rule.		
	$8A(\uparrow) \leq 4 \leq 1$		
		7M	CO2
b)	Determine the equivalent inductance when three inductors with values 6H,		
	4Hand 6H are connected in parallel.	7M	CO2
. a)	OR Find the equivalent resistance between A, B terminals for the network given below.		
. a)	6		
	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	5		
	B∙	8M	CO2
b)		8M 6M	
b)	State and explain Kirchhoff's laws.	8M 6M	
,			CO2
,	State and explain Kirchhoff's laws.	6M	CO2
. a)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics	6M 8M	CO2
. a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR	6M 8M	CO2 CO3
. a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open	6M 8M 6M	CO2 CO3 CO3
. a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode.	6M 8M	CO2 CO3 CO3
a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT–IV	6M 8M 6M	CO2 CO3 CO3
a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT–IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with	6M 8M 6M	CO2 CO3 CO3 CO3
a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT–IV	6M 8M 6M 14M	CO2 CO3 CO3 CO3
. a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT–IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier	6M 8M 6M 14M	CO2 CO3 CO3 CO3
. a) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT–IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier i) Average DC load current ii) Average DC load voltage iii) RMS load current	6M 8M 6M 14M	CO2 CO3 CO3 CO4
. a) b)	State and explain Kirchhoff's laws. UNIT-III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT-IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier i) Average DC load current ii) Average DC load voltage iii) RMS load current Compare half wave and full wave rectifiers in respect of following terms and	6M 8M 6M 14M 14M	CO2 CO3 CO3 CO4 CO4
. a) b)	State and explain Kirchhoff's laws. UNIT-III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT-IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier i) Average DC load current ii) Average DC load voltage iii) RMS load current Compare half wave and full wave rectifiers in respect of following terms and comment on the comparisons. i) efficiency ii) Ripple factor	6M 8M 6M 14M	CO2 CO3 CO3 CO4 CO4
. a) b) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT–IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier i) Average DC load current ii) Average DC load voltage iii) RMS load current Compare half wave and full wave rectifiers in respect of following terms and comment on the comparisons. i) efficiency ii) Ripple factor	6M 8M 6M 14M 14M	CO2 CO3 CO3 CO4 CO4
. a) b)	State and explain Kirchhoff's laws. UNIT-III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT-IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier i) Average DC load current ii) Average DC load voltage iii) RMS load current Compare half wave and full wave rectifiers in respect of following terms and comment on the comparisons. i) efficiency ii) Ripple factor UNIT-V Draw and explain the input and output characteristics of transistor in CB	6M 8M 6M 14M 14M	CO2 CO3 CO3 CO4 CO4
. a) b) b)	State and explain Kirchhoff's laws. UNIT–III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT–IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier i) Average DC load current ii) Average DC load voltage iii) RMS load current Compare half wave and full wave rectifiers in respect of following terms and comment on the comparisons. i) efficiency ii) Ripple factor	6M 8M 6M 14M 14M 8M 6M	CO2 CO3 CO3 CO4 CO4 CO4
. a) b) . a) . a)	State and explain Kirchhoff's laws. UNIT-III Draw and explain piece-wise linear diode characteristics Define the following i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance OR With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode. UNIT-IV Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result. OR Derive the expressions for the following for full wave rectifier i) Average DC load current ii) Average DC load voltage iii) RMS load current Compare half wave and full wave rectifiers in respect of following terms and comment on the comparisons. i) efficiency ii) Ripple factor UNIT-V Draw and explain the input and output characteristics of transistor in CB configuration.	6M 8M 6M 14M 14M 8M 6M	CO2 CO3 CO3 CO4 CO4 CO4

Hall Ticket Number :		
Code: 19A312T	R-19	
I B.Tech. I Semester Supplementary Examinations March/April 20	023	
Engineering Graphics & Design		
(Common to EEE & ECE)		
	: 3 Ho	
Answer any five full questions by choosing one question from each unit (5x14 = 7	'0 Marl	ks)
	Marks	со
UNIT–I		
The major and minor axes of an ellipse are 120mm and 80mm. Draw an ellipse by		
Concentric Circles method	14M	CO1
OR		
Construct a parabola, when the distance of the focus from the directrix is 50mm. Also	4 4 5 4	004
draw tangent on normal to the curve at a point 35mm from the directrix	1410	CO1
UNIT-II		
Draw an involute for a square of side 25mm. Also draw a normal and tangent to the	1 4 5 4	coa
curve at a distance of 70mm from the center of square	1410	CO2
OR Construct a cycloid having a generating circle diameter as 50mm for one revolution		
clockwise. Draw a normal and tangent to a curve at a point 35mm above the base line	14M	CO2
A line AB, 50mm long, has its end A 20mm above the H.P and 30mm below the V.P.		
the line is inclined at 30° to the H.P and at 45° to the V.P. Draw the projections	14M	CO3
OR		
A line AB has its end A 20mm above H.P. and 25mm in front of V.P. The other end B		
is 45mm above H.P. and 55mm in front of V.P. The distance between the end		
projectors is 60mm. Draw its projections and also find the true length and true		000
inclination of the line with H.P and V.P	14M	CO3
A thin rectangular plate of sides of 60mm×30mm has its shortest side in the VP and		
inclined at 30° to the HP. Project its top view if its front view is a square of 30mm long		
sides	14M	CO4
OR		
A regular hexagonal lamina of 22mm side, rests on one of its sides on HP. It is		
parallel to and 15mm away from the VP. The plane is vertical. Draw its projections	14M	CO4
UNIT–V		
Draw the projections of a cone, base 75mm diameter and axis 100mm lying on the		
HP on one of its generators with the axis parallel to the VP	14M	CO5
OR		

10. Convert the following isometric view to orthographic views

	F	fall Ticket Number :	
L	С	ode: 19A511T	9
	U	I B.Tech. I Semester Supplementary Examinations March/April 2023	,
		Problem Solving and C Programming	
		(Common to All Branches)	1
	-	Max. Marks: 70 Inswer any five full questions by choosing one question from each unit (5x14 = 70 M	
		UNIT-I	Marks
1. a	a)	Define Algorithm. Explain the characteristics of algorithm.	6M
b))	What is meant by flow chart? Explain the symbols used in flowchart with an example.	8M
		OR	
2. a	a)	Explain the structure of C program with an example program.	7M
b))	Discuss about C data types.	7M
		UNIT–II	
3. a		Explain conditional statements with an example.	8M
b))	Write a c program to find whether the given year is leap year or not. OR	6M
4. a	a)	What is meant by searching? Explain binary search algorithm.	7M
b)	Write a c program to print array of elements in ascending order using selection sort.	7M
F			
5. a	1)	Define string. Explain declaration of string. Explain any three string handling functions with neat syntax and example.	8M
b)	Write C program to concatenate two strings without using strcat() function	6M
		OR	
6. a		Explain the following key words with example. i) auto ii) register iii) static iv) extern.	8M
D))	Write a c program to illustrate functions with arguments and returning value.	6M
7. a	a)	Define pointer. Explain pointer arithmetic operations.	7M
b))	Explain call by reference with an example program.	7M
		OR	
8. a	a)	Explain dynamic memory allocation functions.	7M
b))	Write a C program to demonstrate array of pointers.	7M
_		UNIT–V	
9. a	a)	Define structure and union. Explain the syntax and accessing elements from structure and union with an example.	8M
b)	Write a C program to maintain a record of n students with four fields (Roll no, name, marks and grade). Print the student details.	6M
		OR	
10. a	a)	Define file. Write a C program to write character to a file and reading character from file.	8M
b)	Discuss about file operations.	6M
		di di di	

			1	1			1	1	1			1	1				
	ŀ	Hall Ticket Number :													D 10		
	С	ode: 19AC11T													R-19		
	I B.Tech. I Semester Supplementary Examinations March/April 2023																
					Alg												
	,	Max. Marks: 70			(Cor	nmc	on to	All E	Bran	che	s)			Tim	ne: 3 Ho	Irc	
		Answer any five full qu	vestic	ons k	by ch	noosii			uesti	on fr	om e	each	unit (
							***	****	-						Marks	со	BL
							UNI										
1.		Find the Eigen values	s and	d Eig	en ve	ector	s of t	the m	atrix								
		$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$															
		$A = \begin{bmatrix} -2 & 5 & -1 \\ 2 & 1 & 2 \end{bmatrix}$															
							~								14M	CO1	L3
2.		Prove that the followi	na se	et of	equa	ations	OF s are		sister	nt an	d sol	ve th	em				
		3x + 3y + 2z = 1, x + 2	-		-								••••		14M	CO1	L3
							UNIT	[_									
				[8]	-8	-2]										
3.		Diagonalize the matri	ix A=	4	-3	-2											
				3	-4	1									14M	CO2	L2
							OF	R									
4.		Reduce the quadrati	c for	m 3	$3x^{2} +$	$5y^2$	$+3z^{2}$	-2x	y-2	<i>yz</i> +	2zx	to ca	nonica	al forr	n		
		by using orthogonal t	ranst	form	ation				٦						14M	CO2	L3
							UNIT										
5.	a)	If $z = u^2 + v^2$ and $u =$	at^2 ,	v = 2	2 <i>at</i> , t	hen	find	$\frac{dz}{dt}$							7M	CO3	13
		$ \partial z$ ∂z		_		2		<i>ui</i>								000	20
	b)	Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, I† 2	z = 10	$\log(x^2)$	$+y^2$	·)								7M	CO3	L3
							OF	R									
6.		A rectangular box o	-										; ft. Fi	nd th			
		dimensions of the bo	x req	luirin	ig lea				its c	onsti	ructic	on.			14M	CO3	L3
7.		T rees the sum of 2	2	2 (2	2 2		UNIT	-1V									
7.		Trace the curve a^2y	= x	: (a	-x)	OF	5							14M	CO4	L4
8.		Using Taylor's theore	em. e	expr	ess t	he p			$2x^3$	+7x	$x^{2} + x$:-6	in pov	vers o	of		
		(x-1).	. , ·			p	<i></i>								14M	CO4	L3
							UNIT	-v									
0		$ = \int \int dx $	dy						_								
9.		Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dx}{\sqrt{(1-x^2)}}$	$\frac{1}{(1-1)^2}$	$\overline{y^2}$)											14M	CO5	13
		•					OF	R								200	_0
10.		$a\sqrt{a^2-x^2}$	2	2.	, ,			• •									
10.		Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} y \sqrt{x^2}$	- + y	² dxa	dy by	/ cha	nginę	g into	pola	r co	ordin	ates.			14M	CO5	L3
		с с С						**									
															Page 1	of 1	