		Hall Ticket Number :			
			R-19]
	C	Code: 19AC12T	200		1
		I B.Tech. I Semester Supplementary Examinations July 20 Applied Physics	JZZ		
		(Common to EEE & ECE)			
			Time: 3	Hours	
	/	Answer any five full questions by choosing one question from each unit (5x1	4 = 70 /	Marks)	
		*****			Blooms
			Marks	CO	Level
	、	UNIT-I			
1.	a)	What are the conditions for sustainable interference?	4M	CO1	L1
	b)	Classify the thin films and Explain the interference in thin films of uniform thickness by reflected light.	10M	CO1	L4
		OR	TON	001	L4
2.		Give the theory of Fraunhofer diffraction due to single slit. Using this obtain			
۷.		intensity distribution curve.	14M	CO1	L2
3.	a)	UNIT–II Define dielectric constant and dielectric polarization.	4M	CO2	L1
5.	b)	What is electronic polarization and derive the equation for electronic	4101	002	LI
	0)	polarizability.	10M	CO2	L2
		OR			
4.	a)	Brief about ferroelectricity?	7M	CO2	L1
	b)	Explain frequency dependency of polarizability of dielectric materials	7M	CO2	L2
		UNIT-III			
5.	a)	State the Stoke's theorem.	4M	CO3	L1
	b)	Derive the electromagnetic wave equation in non-conducting medium	10M	CO3	L2
	,	OR			
6.	a)	Derive expressions for acceptance angle and numerical aperture.	10M	CO3	L2
	b)	Discuss the attenuation losses in optical fiber.	4M	CO3	L3
		UNIT-IV			
7.	a)	Define Hall effect and write its applications.	4M	CO4	L3
	b)	What is intrinsic semiconductor and explain the formation extrinsic			-
		semiconductors through doping?	10M	CO4	L2
		OR			
8.		Derive the expression for carrier concentration in n-type semiconductors.	14M	CO4	L2
		UNIT-V			
9.	a)	Define superconductivity and Explain Meissner effect in superconductor.	8M	CO5	L2
	b)	Discuss the various properties of superconductors.	6M	CO5	L3
		OR			
10.	a)	Explain synthesis of nanomaterials by ball mill method.	8M	CO5	L2
	b)	Analyse basic principles of nanomaterials.	6M	CO5	L4

	F	Hall Ticket Number :			7
	<u> </u>	ada: 104/11T	R-1	9	
	C	→ I B.Tech. I Semester Supplementary Examinations July 20	122		_
		Essentials of Electrical & Electronics Engineering	JZZ		
		(Common to EEE & ECE)			
	-	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1	Time: 3 4 = 70 <i>I</i>		
			Marks	со	Blooms
		UNIT–I			Level
1.		Explain the following with neat diagrams			
		a) Fixed value resistors b) Fixed value capacitors	14M	CO1	L2
		OR			
2.	a)	Differentiate ideal and practical sources and draw their equivalent circuits.	8M	CO1	L2
	b)	What is Inductance? Draw symbol of Inductor and write its voltage, current	CN4	001	10
		and energy relations.	6IVI	CO1	L2
2	2)	UNIT-II			
З.	a)	Determine the equivalent capacitance when three capacitors with values 4F, 5Fand 6F are connected in series.	5M	CO2	L3
	b)	State and explain Thevenin's theorem.	9M		L2
	2)	OR	OW	002	
4.		Verify maximum power transfer theorem for the circuit shown below.			
		$10V_{-1}^{+}$	14M	CO2	L3
		UNIT–III			
5.	a)	Draw and explain the energy band diagrams of intrinsic and extrinsic			
		semiconductors	8M	CO3	L2
	b)	Write the applications of Zener and PN junction diode	6M	CO3	L3
~	,	OR			
6.	a)	Explain breakdown mechanism in PN junction diode	10M	CO3	L2
	b)	A Ge diode carries a current of 1mA at room temperature when a forward bias of 0.15 V is applied. Estimate the reverse saturation current at room temperature.	4M	CO3	L3
		UNIT–IV			
7.		With the help of a neat circuit diagram, input and output waveforms, describe the operation of Half-wave rectifier. OR	14M	CO4	L2
8.	a)	With neat waveforms explain the Full wave Rectifier with LC filter.	8M	CO4	L2
	b)	Define the following i)Average current ii) RMS current iii) PIV	6M	CO4	L1
9.	a)	With neat diagram explain the various current components of NPN transistor.	8M	CO5	L2
	b)	Derive the relation between , and OR	6M	CO5	L3
10.		With neat block diagram explain the working of CRO and list out its applications.	14M	CO5	L2

	Ha	all Ticket Number :	
L	Co	de: 19A511T	
	00	I B.Tech. I Semester Supplementary Examinations July 2022	
		Problem Solving and C Programming	
	М	(Common to All Branches) ax. Marks: 70 Time: 3 Hour	2
		nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks	
			Marks
		UNIT–I	
1.	a)	What is Programming Language? What is the generation of programming Language? Describe it briefly.	10M
	b)	Describe Structure of C Language	4M
		OR	
2.	a) b)	Distinguish between printf() and scanf() in the C language	7M
	b)	What is a flow chart? How it is different from an Algorithm	7M
_		UNIT–II	
3.	a) b)	Explain with examples, any Four types of operators.	7M 7M
	b)	Explain for loop and nested for loop with suitable example. OR	7 111
4.	a)	Describe Conditional Statements Used in C Language	7M
	b)	Write a program on calculating area and perimeter of square	7M
		UNIT–III	
5.	a)	What is a function in c? How function is declared. Explain with an example.	7M
	b)	Illustrate the storage classes extern, static and auto with an example.	7M
6	a)	OR Explain the following string handling functions with examples:	
0.	a)	(i) strcpy() (ii) strcat() (iii) strrev() (iv) strlen	8M
	b)	Explain Preprocessor commands with examples.	6M
		UNIT-IV	
7.	a)	What is a pointer? What are the advantages of pointers?	7M
	b)	Explain dynamic memory allocation with examples	7M
0	-)	OR	714
δ.	a) b)	Explain about pointer arithmetic and arrays with example. Write a c program to swap two numbers using call by value and call by reference.	7M 7M
	0)		7 101
0	a)	UNIT-V Define Structure? How structures are initialized? Explain with example.	7M
9.	a) b)	Write a C program read and write the content of the file using fprintf() and fscanf()	7 111
	- /	functions.	7M
^	_ `	OR	
υ.	a)	Explain the following functions in files: (i) fseek() (ii) ftell() (iii) foef() (iv) fopen()	8M
	b)	Define and write the syntax of the structure and union and give example for each one	7M

ſ	Hall Ticket Number :			
		R-1	9	
	Code: 19AC11T I B.Tech. I Semester Supplementary Examinations July 20 Algebra and Calculus)22		1
	(Common to All Branches)			
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1 ********	ime: 3 4 = 70 N		
		Marks	СО	Blooms Level
	UNIT-I			
1.	Solve the system of equations by matrix method x + y + z = 6, 2x + 3y - 2z = 2, 5x + y + 2z = 13	14M	001	1.0
	OR	14111	CO1	L3
2.	Find the Eigen values and Eigen vectors of the matrix			
	$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$			
		14M	CO1	L3
	UNIT-II			
3.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ and hence find			
	A^{-1} using Cayley-Hamilton theorem.	14M	CO2	L2
	OR			
4.	Reduce the quadratic form $x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2x_3$ to canonical form by			
	using orthogonal transformation.	14M	CO2	L3
5.	UNIT-III If $u = x^2 - y^2$, $v = 2xy$ where $x = r \cos_x$, $y = r \sin_x$, then show that			
	$\frac{\partial(u,v)}{\partial(r,_{u})} = 4r^{3}$	14M	CO3	L2
	OR			
6.	Find three positive numbers whose sum is 100 and whose product is maximum.	14M	CO3	L3
	UNIT-IV	1-111	003	LJ
7. a	f.			
		7M	CO4	L3
b		7M	CO4	L3
8.	OR Trace the curve $x^3 + y^3 = 3axy$			
0.	UNIT-V	14M	CO4	L4
9. a) Evaluate $\int_{0}^{2} \int_{0}^{3} xy dx dy$	7M	CO5	L3
	2 x	7 101	005	LJ
b) Evaluate $\int_{0}^{2} \int_{0}^{x} y dy dx$	7M	CO5	L3
	OR	7 1 1 1	000	LJ
10 -) Evolution $\int x^5 (1-x)^3 dx$ using Data function			
iu. a) Evaluate $\int_{0}^{5} x^{5} (1-x)^{3} dx$ using Beta function.	7M	CO5	L3
L) Evolution $\int_{0}^{\infty} u^{6} e^{-2x} dx$			
C) Evaluate $\int_{0}^{\infty} x^{6} e^{-2x} dx$	7M	CO5	L3
