Hall Ticket Number :

R-19

Code: 19AC12T

| B.Tech. I Semester Supplementary Examinations July 2022

Applied Physics

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO Blooms

UNIT-I

1. a) What are the conditions for sustainable interference?

4M CO1
b) Classify the thin films and Explain the interference in thin films of uniform thickness by reflected light.

10M CO1

OR

2. Give the theory of Fraunhofer diffraction due to single slit. Using this obtain intensity distribution curve.

14M CO1

UNIT-II

3. a) Define dielectric constant and dielectric polarization.

4M CO2
b) What is electronic polarization and derive the equation for electronic polarizability.

10M CO2

OR

4. a) Brief about ferroelectricity? $7 \mathrm{M} \quad \mathrm{CO} 2$
b) Explain frequency dependency of polarizability of dielectric materials $7 \mathrm{M} \quad \mathrm{CO} 2$

UNIT-III

5. a) State the Stoke's theorem.

4M CO3
b) Derive the electromagnetic wave equation in non-conducting medium

10M CO3

OR

6. a) Derive expressions for acceptance angle and numerical aperture.

10 M CO 3
b) Discuss the attenuation losses in optical fiber.
$4 \mathrm{M} \quad \mathrm{CO} 3$

UNIT-IV

7. a) Define Hall effect and write its applications.
$4 \mathrm{M} \quad \mathrm{CO} 4$
b) What is intrinsic semiconductor and explain the formation extrinsic semiconductors through doping?

10M CO4

OR

8. Derive the expression for carrier concentration in n-type semiconductors. $14 \mathrm{M} \quad \mathrm{CO}$

UNIT-V

9. a) Define superconductivity and Explain Meissner effect in superconductor.

8M CO5
b) Discuss the various properties of superconductors.
$6 \mathrm{M} \mathrm{CO5}$

OR

10. a) Explain synthesis of nanomaterials by ball mill method.

8M CO5
b) Analyse basic principles of nanomaterials.
\square

Code: 19A411T

| B.Tech. I Semester Supplementary Examinations July 2022

Essentials of Electrical \& Electronics Engineering

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)

| UNIT-I Marks coms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Level |

1. Explain the following with neat diagrams
a) Fixed value resistors
b) Fixed value capacitors
14M CO1

OR
2. a) Differentiate ideal and practical sources and draw their equivalent circuits.

8M CO1
b) What is Inductance? Draw symbol of Inductor and write its voltage, current and energy relations.
$6 \mathrm{M} \mathrm{CO1}$
andenergy relations.

UNIT-II

3. a) Determine the equivalent capacitance when three capacitors with values $4 \mathrm{~F}, 5 \mathrm{Fand} 6 \mathrm{~F}$ are connected in series.

5 M CO 2
b) State and explain Thevenin's theorem.

9 M CO 2
4. Verify maximum power transfer theorem for the circuit shown below.

UNIT-III
5. a) Draw and explain the energy band diagrams of intrinsic and extrinsic semiconductors

8 M CO
b) Write the applications of Zener and PN junction diode

6 M CO 3
OR
6. a) Explain breakdown mechanism in PN junction diode

10M CO3
b) A Ge diode carries a current of 1 mA at room temperature when a forward bias of 0.15 V is applied. Estimate the reverse saturation current at room temperature.

4M CO3

UNIT-IV

7. With the help of a neat circuit diagram, input and output waveforms, describe the operation of Half-wave rectifier.

14M CO4
8. a) With neat waveforms explain the Full wave Rectifier with LC filter.

8 M CO 4
b) Define the following i)Average current ii) RMS current iii) PIV

6 M CO 4

UNIT-V

9. a) With neat diagram explain the various current components of NPN transistor.
$8 \mathrm{M} \mathrm{CO5}$
b) Derive the relation between α, β and
$6 \mathrm{M} \mathrm{CO5}$
10. With neat block diagram explain the working of CRO and list out its applications. $14 \mathrm{M} \quad \mathrm{CO} 5 \mathrm{~L} 2$
\square

Code: 19A511T

| B.Tech. I Semester Supplementary Examinations July 2022

Problem Solving and C Programming

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
UNIT-I1. a) What is Programming Language? What is the generation of programming Language?Describe it briefly.10M
b) Describe Structure of C Language 4M
OR
2. a) Distinguish between printf() and scanf() in the C language 7M
b) What is a flow chart? How it is different from an Algorithm 7M
UNIT-II
3. a) Explain with examples, any Four types of operators. 7M
b) Explain for loop and nested for loop with suitable example. 7M
OR
4. a) Describe Conditional Statements Used in C Language 7M
b) Write a program on calculating area and perimeter of square 7M
UNIT-III
5. a) What is a function in c ? How function is declared. Explain with an example. 7M
b) Illustrate the storage classes extern, static and auto with an example. 7M
OR6. a) Explain the following string handling functions with examples:
(i) $\operatorname{strcpy}($) (ii) strcat() (iii) strrev() (iv) strlen 8M
b) Explain Preprocessor commands with examples. 6M
UNIT-IV
7. a) What is a pointer? What are the advantages of pointers? 7M
b) Explain dynamic memory allocation with examples 7M
OR
8. a) Explain about pointer arithmetic and arrays with example. 7M
b) Write a c program to swap two numbers using call by value and call by reference. 7M
UNIT-V9. a) Define Structure? How structures are initialized? Explain with example.7M
b) Write a C program read and write the content of the file using fprintf() and fscanf() functions. 7M
OR
10. a) Explain the following functions in files:
(i) fseek() (ii) ftell() (iii) foef() (iv) fopen()8M
b) Define and write the syntax of the structure and union and give example for each one 7M

Code: 19AC11T

| B.Tech. I Semester Supplementary Examinations July 2022

Algebra and Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Solve the system of equations by matrix method

$$
x+y+z=6,2 x+3 y-2 z=2,5 x+y+2 z=13
$$

14M CO1
OR
2. Find the Eigen values and Eigen vectors of the matrix
$\mathrm{A}=\left[\begin{array}{lll}2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3\end{array}\right]$
14M CO1

UNIT-II

3. Verify Cayley-Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ and hence find A^{-1} using Cayley-Hamilton theorem.

14M CO2

OR

4. Reduce the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ to canonical form by using orthogonal transformation.

UNIT-III

5. If $u=x^{2}-y^{2}, v=2 x y$ where $x=r \cos \theta, y=r \sin \theta$, then show that
$\frac{\partial(u, v)}{\partial(r, \theta)}=4 r^{3}$
14M CO3

OR

6. Find three positive numbers whose sum is 100 and whose product is maximum.

14 M CO

UNIT-IV

7. a) Expand $\sin x$ in powers of $\left(x-\frac{\pi}{2}\right)$.
b) Using Maclaurin's series, expand $\log (1+x)$ in powers of x.

7M CO4

OR
8. Trace the curve $x^{3}+y^{3}=3 a x y$

7M CO4

UNIT-V

9. a) Evaluate $\int_{0}^{2} \int_{0}^{3} x y d x d y$
b) Evaluate $\int_{0}^{2} \int_{0}^{x} y d y d x$

OR

10. a) Evaluate $\int_{0}^{1} x^{5}(1-x)^{3} d x$ using Beta function.
$7 \mathrm{M} \quad \mathrm{CO} 5$
L3
b) Evaluate $\int_{0}^{\infty} x^{6} e^{-2 x} d x$
