Code: 19AC11T

| B.Tech. I Semester Supplementary Examinations August 2021

Algebra and Calculus

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define the rank of the matrix and find the rank of $\left[\begin{array}{cccc}0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$ by using Echelon form.
b) Investigate the values of λ and μ so that the equations
$2 x+3 y+5 z=9,7 x+3 y-2 z=8,2 x+3 y+\lambda z=\mu$, have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.

OR

2. Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$

UNIT-II

3. If $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2\end{array}\right]$, verify Cayley-Hamilton theorem. Hence find A^{-1} and A^{4}.

OR

4. Reduce the Quadratic form $x^{2}+3 y^{2}+3 z^{2}-2 y z$ to a canonical form by an orthogonal transformation and discuss its nature also find the modal matrix.

UNIT-III

5. a) If $U=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ prove that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} U=\frac{-9}{(x+y+z)^{2}}$
b) In a plane triangle, find the maximum value of $\cos A \cos B \cos C$

OR

6. a) If $x+y+z=u, y+z=u v, z=u v w$, then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$
b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ given $x+y+z=3 a$.

UNIT-IV

7. a) Obtain the Taylor's series expansion of $\sin 2 \mathrm{x}$ about $x=\frac{\pi}{4}$.
b) Trace the curve $x^{3}+y^{3}=3$ axy .
8. a) Obtain the Maclaurin's series expansion of $\log \left(1+\sin ^{2} x\right)$ up to the term containing x^{6}.
b) Trace the curve $r^{2}=a^{2} \cos 2 \theta$.

UNIT-V

9. a) Evaluate the double integral $\iint_{R} x y d x d y$ where ' R ' is the region bounded by the lines x-axis, ordinate $x=2 a$ and $x^{2}=4 a y$
b) Show that $\Gamma(n)=\int_{0}^{1}\left(\log \frac{1}{y}\right)$ dy (n.0)

OR

10. a) Evaluate the integral by changing the order of integration $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$
b) Show that $\beta(p, q)=\int_{0}^{\infty} \frac{y^{q-1}}{(1+y)^{p+q}} d y=\int_{0}^{1} \frac{x^{p-1}+x^{q-1}}{(1+x)^{p+q}} d x$

| B.Tech. I Semester Supplementary Examinations August 2021

Chemistry of Materials

(Common to CE \& ME)

Max. Marks: 70

Time: 3 Hours

Answer any five questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Determine the total, temporary and permanent hardness of water by EDTA method?
b) Define Hardness of Water with example and Differentiate temporary hardness and permanent hardness?
2. a) Explain the following
i) Scale and Sludge ii) priming and foaming 8M
b) Explain the treatment of saline water by reverse osmosis with neat diagram

UNIT-II

3. a) Describe the construction of lead-acid battery and give the reactions occurring during the discharge process.
b) How is calomel electrode prepare? Give a neat sketch of calomel electrode.

OR
4. a) Write short note on fuel cell. How is it different from commercial cell? Mention the advantages of fuel cell?
b) Give the importance of Lithium battery. Explain the basic principles of involved in it. 6M

UNIT-III

5. a) What is corrosion? Explain the mechanism of Electrochemical corrosion with diagram and equations
b) Explain a brief note on Cathodic Protection by Impressed Current and Sacrificial Anode

OR
6. a) Explain the factors influence the rate of corrosion
b) Differentiate anodic and cathodic inhibitors 6M

UNIT-IV

7. a) List the differences between thermoplastic and thermosetting resins. 6 M
b) Give the preparation, properties and uses of PVC.

OR

8. a) What is Portland cement? How is it manufactured?
b) What is knocking and anti-knocking agents?

UNIT-V

9. a) Define nanomaterial and Explain its preparation by sol gel method
b) Define smart materials and explains its applications? 6 M

OR
10. a) Explain briefly about applications of nanomaterial
b) Explain the principle involved in SEM and TEM

Engineering Graphics -I

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) A point moves such that the sum of its distances from two fixed points is always equal to 100 mm . The distance between the fixed points is 70 mm . Draw the curve and locate tangent and normal to the curve at any point on it.
b) Define a conic section

OR
2. a) Draw a parabola with the axis vertical, for a rise of 80 mm and a span of 80 mm . Locate the focus and the directrix.

10M
b) State the significance of lettering. How letters are specified.

UNIT-II

3. Generate a hypocycloid of a circle of diameter 50 mm and a directing circle of radius 100 mm . Also draw normal and tangent at any point on the curve.

OR

4. a) Construct an involute of a circle 50 mm in diameter. Also draw the normal and tangent at any point.
b) Name some of the plane curves used in engineering applications.

UNIT-III

5. A line $A B, 75 \mathrm{~mm}$ long is in the second quadrant with the end A in the H.P. and the end B in the V.P. The line is inclined at 30° to the H.P. and at 45° to the V.P. Draw the projections of $A B$.

OR

6. A point 30 mm above $x y$ line is the plan-view of two points P and Q. The elevation of P is 45 mm above the H.P. while that of the point Q is 35 mm below the H.P. Draw the projections of the points and states their position with reference to the principal planes and the quadrant in which they lie.

UNIT-IV

7. An equilateral triangular plate of 60 mm edge lies with one of its edges on the HP , and the surface of the plate is inclined at 40° to the HP. The edge on which it rests is inclined to the VP at 50°. Draw its projections.

OR

8. Generate the projections of a regular pentagon of 40 mm side, having its surface inclined at 30° to the H.P. and a side parallel to the H.P. and inclined at an angle of 60° to the V.P.

UNIT-V

9. A pentagonal pyramid, having base with a 30 mm side and 70 mm long axis, rests on a corner of its base on HP, such that its apex is 50 mm above the ground and the top view of the axis is inclined at 30° to the VP. Illustrate the projections.

OR

10. Show the projections of a cylinder 75 mm diameter and 100 mm long, lying on the ground with its axis inclined at 20° to the V.P. and parallel to the ground.

Hall Ticket Number :										

Code: 19A511T

| B.Tech. I Semester Supplementary Examinations August 2021

Problem Solving and C programming

(Common to All Branches)

Max. Marks: 70 Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I

1. a) Define Algorithm. Explain the characteristics of algorithm7M
b) List and explain briefly about various computer languages 7M
OR
2. a) What is meant by flow chart? Explain the symbols used in flowchart with an example. 7M
b) Discuss about C data types. 7M
UNIT-II
3. a) What are the different types of arrays in C? Explain with a suitable example. 7M
b) Write a C program to find the factorial of a given number. 7M
OR
4. a) Explain conditional statements with an example. 7M
b) Write a c program to print array of elements in ascending order using bubble sort. 7M
UNIT-III
5. a) Define string. Explain declaration of string. Explain any three string handling functions. 6M
b) What is recursion? Explain with an example 8M
OR
6. Explain the following key words with example. i) auto ii) register iii) static iv) extern. 14M
UNIT-IV
7. a) What is pointer? How to initialize and declare pointer variables? 7M
b) Explain dynamic memory allocation functions. 7M
OR
8. a) Write a C program to demonstrate array of pointers. 7M
b) Explain different parameter passing techniques with suitable examples. 7M
UNIT-V
9. Define structure and union. Explain the syntax and accessing elements from structure and union with an example. Write the differences between structures and unions 14M
OR
10. a) Define file. Write a C program to write character to a file and reading character from file. 8M
b) Give brief description about the various modes of a file. 6M
