	Hal	I Ticket Number :			
L	<u> </u>	le: 19A311T	R-19	>	
	Loc	I B.Tech. I Semester Supplementary Examinations November Engineering Graphics – I (Common to CE & ME)	2023		
		Til wer any five full questions by choosing one question from each unit (5x14 ********	me: 3 F = 70 M		
			Marks	со	BL
1.	a)	UNIT–I Inscribe an ellipse in a parallelogram having sides 150 mm and 100 mm long and an included angle of 1200.	7M	CO1	Le
	b)	A point P is 40 mm and 60 mm respectively from two straight lines which are at right angles to each other. Draw the rectangular hyperbola from p within 15mm distance from each line.		CO1	Le
2.		OR Construct a rectangular hyperbola, when a point P on it is at a distance of 18mm and 34mm from two asymptotes. Also draw a tangent to a curve at a			
3.		point 20mm from an asymptote. UNIT–II Draw a hypocycloid of a circle of 40mm diameter, which rolls inside another	14M	CO1	Le
J.		a normal to it at a point 65mm from the center of the directing circle.		CO2	L
4.		Construct a parabola, with the distance of the focus from the directrix as 50 mm, also draw normal and tangent to the curve at a point 40 from the directrix.)		
5.		A line AB, 65mm long, has its end A 20mm above the H.P. and 25mm in from of the V.P. The end B is 40mm above the H.P. and 65mm in front of the V.P. Draw the projections of AB and show its inclinations with the H.P. and the V.P.		CO3	L
6.		OR Draw the projections of the following points on the same ground line, keeping the projections 25mm apart. A, in the H.P & 20mm, behind the V.P B, 40mm above the H.P & 25mm in front of the V.P. C, in the V.P & 40mm above the H.P.	I		
		D, 25mm below the H.P & 25mm behind the V.P.E, 15mm above the H.P & 50mm behind the V.P.F, 40mm below the H.P & 25mm in front of the V.P.G, in both the H.P & the V.P.	14M	CO3	L
7.		UNIT-IV A regular pentagon of 25mm side has one side on the ground. Its plane is inclined at 45° to the HP and perpendicular to the VP. Draw its projections.		CO4	L
8.		OR A rhombus has its diagonals 100mm and 60mm long. Draw the projections of the rhombus, when it is so placed that its top view appears to be a square of diagonal 60mm long and the vertical plane through the longer diagonal makes 30° with VP.	:	CO4	I
9.		UNIT-V Draw the projections of a cone, base 75mm diameter and axis 100mm lying or the HP on one of its generators with the axis parallel to the VP.			L
10.		OR A square prism, base 40mm side and height 65mm has its axis inclined at 45° to the HP and has an edge of its base, on the HP and inclined at 30° to the VP. Draw its Projections.		CO5	L

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and/or equations written eg. 32+8=40, will be treated as malpractice.

Hall	Ticket Number :	
Cod	e: 19A511T R-19	
	I B.Tech. I Semester Supplementary Examinations November 2023	
	Problem Solving and C Programming	
	(Common to All Branches) x. Marks: 70 Time: 3 Hou	
	wer any five full questions by choosing one question from each unit (5x14 = 70 Mark	
7 (115	*******	j
	UNIT-I	Mark
1. a)	What is a variable? What are the rules for declaring variables? Give examples of	
	valid and invalid variables	81
b)	What is an algorithm? Describe the characteristics of an Algorithm	61
	OR	
2. a)	What is data type? Explain basic data types and their sizes used in a C Language	71
b)	Draw the Flow Chart for finding a number is prime or not.	71
	UNIT-II	
3. a)	Write a C program to generate multiplication table	6
b)	Explain in detail about Control Statements?	8
	OR	
4. a)	Write a program in C to search for an element using linear search technique	71
b)	Explain about selection sort with suitable example.	71
	UNIT–III	
5. a)	Explain any five string manipulation library functions with examples.	91
b)	What is mean by recursion? Explain the advantages of recursive function.	51
	OR	
6.	What is function parameter? Explain different types of parameters in C functions.	14N
	UNIT–IV	
7.	What is dynamic memory allocation? Write and explain the different dynamic	
	memory allocation functions in C.	14
•	OR	
8. a)	What is a pointer? Explain how the pointer variable declared and initialized.	71
b)	Write advantages and disadvantages of pointers	71
•	UNIT-V	
9. a)	Explain how the structure variable passed as a parameter to a function with example.	71
b)	Write a C program to read and display a text from the file.	71
5)	OR	71
0. a)	What is a self-referential structure? Give an example.	51
b. a)	What is a file? Explain how the file open and file close functions	91
5)		51

На	all Ticket Number :			
Co	de: 19AC11T	R-19	,	
cu	I B.Tech. I Semester Supplementary Examinations Novemb Algebra and Calculus (Common to All Branches)	oer 2023		
	ax. Marks: 70 hswer any five full questions by choosing one question from each unit (5: *********	Time: 3 H x14 = 70 M		
	UNIT–I	Marks	CO	BL
1. a)	If $\}$ is an Eigen value of a non-singular matrix A , then $\frac{1}{3}$ is an Eigen va	lue		
	of $A^{^{-1}}$	7M	CO1	L2
b)	Find the Eigen values of A= $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2 \end{bmatrix}$	7M	CO1	L3
ı	OR			
2. a)	Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$			
b)	Solve $x + y + z = 4$, $2x + 5y - 2z = 3$, $x + 7y - 7z = 5$	7M		L3
	UNIT-II	7 101	CO1	L3
3.	Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 - 2xy - 2yz + 2zx$ to canonic	ical		
	form by using orthogonal transformation.	14M	CO2	L3
4.	OR Diagonalize the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$			
		14M	CO2	L2
	If $z = u^2 + v^2$ and $u = at^2$, $v = 2at$, then find $\frac{dz}{dt}$	7M	CO3	L3
b)	Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $z = \log(x^2 + y^2)$ OR	7M	CO3	L3
6.	Find the maximum and minimum values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$	14M	CO3	L3
7.	UNIT-IV Trace the curve $r = a \cos 2_{\pi}$ OR	14M	CO4	L4
8. a)	Expand sin x in powers of $(x - \frac{f}{2})$.			
b)	Using Maclaurin's series , expand $log(1+x)$ in powers of x.	7M 7M	CO4 CO4	L3 L3
				-

9. Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} dx = \frac{3\sqrt{f}}{8}$ 14M CO5 L3 OR 10. a) Evaluate $\int_{0}^{2} \int_{0}^{3} xy dx dy$ b) Evaluate $\int_{0}^{2} \int_{0}^{x} y dy dx$ ***

Γ	На	Il Ticket Number :			1
			R-19	7	
		→ I B.Tech. I Semester Supplementary Examinations Novembe	er 2023		
		Chemistry of Materials	1 2020		
		(Common to CE & ME)			
		1 swer any five full questions by choosing one question from each unit (5x1	Time: 3 H		
	AL		4 - 70 M	urks j	
			Marks	СО	BL
		UNIT-I			
1.		With the help of neat diagram, explain zeolite process for softening of the water and give its advantages	14M	CO1	L4
		OR		001	-
2.	a)	Explain the principle for osmosis? How it is used in water purification	7M	CO1	L2
	b)	Describe the desalination of brackish water by electrodialysis method	7M	CO1	L2
3.	a)	UNIT–II Define secondary cells? Describe the construction of Ni-Cd cell and its			
0.	a)	applications	7M	CO2	L1
	b)	Discuss the construction and working principle of Li-MnO2 batteries	7M	CO2	L3
		OR			
4.		Explain the principle and construction of lead acid cell with its application	14M	CO2	L2
5.	a)	Explain the constituents and functions of organic coatings	7M	CO3	L2
	b)	List out the differences between anodic coating and cathodic coating	7M	CO3	L1
		OR			
6.	a)	Describe the various factors influencing corrosion	7M	CO3	L2
	b)	Differentiate metallic coating and organic coating	7M	CO3	L3
		UNIT-IV			
7.	a)	Explain the preparation of PVC and polyphosphazine polymers	7M	CO4	L2
	b)	Define knocking? Write a short notes on octane values and cetane value	7M	CO4	L1
		OR			
8.		Elaborate the mechanism involved in the preparation of Bakelite and lis			
		out properties and applications of Bakelite	14M	CO4	L3
		UNIT–V			
9.		Describe the characterizations of nanomaterial by BET method	14M	CO5	L2
		OR			
10.		What is meant by nanomaterial explain some important applications	7M	CO5	L1
	b)	Discuss any one synthetic methods of nanomaterials	7M	CO5	L2
