Hall Ticket Number: R-19 Code: 19A411T I B.Tech. I Semester Supplementary Examinations February 2022 **Essentials of Electrical & Electronics Engineering** (Common to EEE & ECE) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) **Blooms** CO Marks Level UNIT-I 1. Classify the types of sources and explain their properties with neat circuit diagrams. 14M CO1 L4 OR 2. a) What is tolerance? What are the color codes used to indicate the tolerance value and write their range? 9M CO1 L2 b) Find the resistor values for the color codes given below. i) Brown, Black, Orange ii) Orange, Red, Red iii) Yellow, Violet, Red iv) Green, Violet, Blue v) Red, Red, Red 5M CO1 L3 UNIT-II 3. a) Differentiate series and parallel circuit L2 6M CO2 b) Find voltage across 8, 4 resisters using voltage division rule for the circuit given below 4M CO2 OR 4. a) State and explain maximum power transfer theorem. 7M CO2 L2 b) Find current through 1 resistor using Norton's theorem for the circuit given below 7M CO2 L3 **UNIT-III** 5. a) Write short notes on drift and diffusion currents of a semiconductor. 8M CO3 L1

Code: 19A411T

	b)	A semiconductor wafer is 0.5mm thick, a potetional of 100mv is applied across it.			
		i) What is the electron drift velocity if $\mu_e=0.2$ m ² /V sec?			
		ii) What is the time required for an electron to more			
		across this thickness?	6M	CO3	L3
		OR			
6.	a)	Derive the expression for Diffusion Capacitance.	6M	CO3	L2
	b)	Explain the Current Components in P-N Diode.	8M	CO3	L2
		UNIT-IV			
7.		With neat waveforms explain the Full wave Rectifier with			
		RC filter and also derive an expression for its ripple factor.	14M	CO4	L3
		OR			
8.	a)	Draw the circuit diagram of half-wave rectifier with			
		inductor filter and explain it.	8M	CO4	L2
	b)	List the merits and demerits of LC filter			
			6M	CO4	L2
		UNIT-V			
9.		Draw and explain the input and output characteristics of			
		transistor in CE configuration.	14M	CO5	L2
		OR			
10.		Write short notes on			
		a) Multimeter b) DSO	14M	CO5	L2

Hall Ticket Number :						[
						1

Code: 19A312T

I B.Tech. I Semester Supplementary Examinations February 2022

Engineering Graphics & Design

(Common to EEE & ECE)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

		******		•	
			Marks	СО	Blooms Level
		UNIT-I			
1.		Construct a regular Hexagon by General Method, given the length of its side is 50mm	14M	CO1	L2
		OR			
2.		Construct a parabola with the length of base 60mm and axis 30mm long using tangent method	14M	CO1	L2
		UNIT-II			
3.		Draw a hypocycloid of a circle of 40mm diameter, which rolls inside another circle of 160mm diameter, for one revolution counter clockwise. Draw a tangent & a normal to it at a point 65mm from the centre of the directing circle	14M	CO2	L2
		OR			
4.		Construct a cycloid having a generating circle diameter as 50mm when the point P is exactly opposite to initial point for one revolution clockwise. Draw a normal and tangent to a curve at a point 35mm above the base line UNIT-III	14M	CO2	L2
5.		A line PQ, 50mm long is perpendicular to H.P. and 15mm in front of V.P. The end P, nearer to H.P is 20mm above it. Draw the projections of a line OR	14M	CO3	L3
6.		A line AB, 65mm long, has its end A 20mm above the H.P. and 25mm in front of the V.P. The end B is 40mm above the H.P. and 65mm in front of the V.P. Draw the projections of AB and show its inclinations with the H.P. and the V.P. UNIT-IV	14M	CO3	L3
7.		A circular plate of diameter 50mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections OR	14M	CO4	L3
8.		A regular hexagon of 40mm side has a corner in the HP. Its surface is inclined			
0.		at 45° to the HP and the diagonal through the corner which is in the HP makes an angle of 30° with the VP. Draw its projections UNIT-V	14M	CO4	L3
9.	a)	Draw the projections of a cone of base 30mm diameter and axis 50mm long, when it is resting on HP on its base	07M	CO5	L3
	b)	Draw the projections of a cylinder of base 30mm diameter and axis 50mm long, when it is resting on HP on its base	07M	CO5	L3
		OR			
10.		A square prism, base 40mm side and height 65mm has its axis inclined at 45° to the HP and has an edge of its base, on the HP and inclined at 30° to the VP. Draw its Projections ***	14M	CO5	L3

R-19

Hall Ticket Number :						

Code: 19A511T

R-19

I B.Tech. I Semester Supplementary Examinations February 2022

Problem Solving and C Programming

(Common to All Branches)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	What is an algorithm? Describe the characteristics of an Algorithm	6M		
	b)	What is flowchart? Describe various symbols used in flowcharts.	8M		
		OR			
2.	a)	What is data type? Explain basic data types and their sizes used in a C Language	7M		
	b)	What are the relational operators? Explain with example. UNIT-II	7M		
3.	a)	Describe Conditional Statements used in C Language	7M		
	b)	Compare While and do While statements with suitable example code.	7M		
		OR			
4.	a)	Define an array. Explain how to declare and initialize arrays.	7M		
	b)	Write a c program to sort the list of numbers using bubble sort. Explain with an example.	7M		
		UNIT-III			
5.	a)	What is a string with respect to C? How is it declared, initialized and manipulated?	7M		
	b)	Describe parameter passing techniques for functions.	7M		
		OR			
6.	a)	Illustrate the storage classes extern, static and auto with an example to each.	7M		
	b)	Write a C program to perform multiplication of two matrices UNIT-IV	7M		
7	a)	What is a pointer? What are the features of pointers? Write a C program to			
	u,	print address of a variable	7M		
	b)	Write a c program to swap two numbers using call by reference.	7M		
		OR			
8.		Differentiate static and dynamic memory allocation. How to allocate and freeing dynamic memory allocation. Explain with an example.	14M		
•	,	UNIT-V			
9.	a)	Define Structures. Explain with an example how structure members are initialized and accessed	7M		
	b)	Explain different modes to open a file	7M		
		OR			
10.	a)	Write a program to copy content of existing file to another file.	7M		
	b)	Differentiate between a structure and union with respective allocation of memory by the compiler. Given an example of each.	7M		

Code: 19ACI1T 1 B.Tech, I Semester Supplementary Examinations February 2022 Algebra and Calculus (Common to All Branches) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x1 4 = 70 Marks) Marks co UNIT-I 1. a) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$ 7M CO1 b) Solve $x + y + z = 4$, $2x + 5y - 2z = 3$, $x + 7y - 7z = 5$ OR 2. Show that the system of equations $2x_1 - 2x_2 + x_1 = 3x_3 + 2x_1 = 3x_3 + 2x_1 = 3x_3$ can possess a non-trivial solution only if $y = 1$, $y = 3$. Obtain the general solution in each case. UNIT-II 3. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ and hence find A^{-1} using Cayley-Hamilton theorem. OR 4. Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ to canonical form by using orthogonal transformation. UNIT-III 5. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, then evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ OR 6. Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ Unit-IV 7. a) Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x - 1)$. OR 8. Trace the curve $y^2(2a - x) = x^3$ 14M CO4 UNIT-IV 9. Evaluate $y^3(2a - x) = x^3$ 15		Hall Ticket Number :			1
Algebra and Calculus (Common to All Branches) Max. Marks: 70 Answer only five full questions by choosing one question from each unit (5x14 = 70 Marks) Marks CO UNIT-I 1. a) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$ 7M CO1 b) Solve $x + y + z = 4$, $2x + 5y - 2z = 3$, $x + 7y - 7z = 5$ OR 2. Show that the system of equations $2x_1 - 2x_2 + x_3 = 3x_1, 2x_1 - 3x_2 + 2x_3 = 3x_2, -x_1 + 2x_2 = 3x_3 \text{can possess a non-trivial solution only if } = 1, \} = 3$. Obtain the general solution in each case. UNIT-II 3. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ and hence find A ¹ using Cayley-Hamilton theorem. OR 4. Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ to canonical form by using orthogonal transformation. UNIT-II 5. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, then evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1, -1, 0)$ or 6. Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ UNIT-IV 7. a) Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x - 1)$. The CO4 OR 8. Trace the curve $y^2(2a - x) = x^3$ UNIT-V 9. Evaluate $y^3 = xyy + xy + yy + yy = xy + yy + yy = xy + yy + y$		Code: 19AC11T	R- 1	9	
UNIT-I 1. a) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$ 7M CO1 b) Solve $x + y + z = 4$, $2x + 5y - 2z = 3$, $x + 7y - 7z = 5$ OR 2. Show that the system of equations $2x_1 - 2x_2 + x_3 = 3x_1$, $2x_1 - 3x_2 + 2x_3 = 3x_2$, $-x_1 + 2x_2 = 3x_3$ can possess a non-trivial solution only if $a = 3$ = 3. Obtain the general solution in each case. UNIT-II 3. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ and hence find $A = 1$ using Cayley-Hamilton theorem. OR 4. Reduce the quadratic form $a = 3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ to canonical form by using orthogonal transformation. UNIT-III 5. If $a = x + 3y^2 - 2x^3$, $a = 4x^2yz$, $a = 2z^2 - xy$, then evaluate $a = \frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $a = \partial(u, v,$		Algebra and Calculus (Common to All Branches) Max. Marks: 70	Time: 3		
1. a) Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$ TM CO1 b) Solve $x + y + z = 4$, $2x + 5y - 2z = 3$, $x + 7y - 7z = 5$ OR 2. Show that the system of equations $2x_1 - 2x_2 + x_3 = \}x_1, 2x_1 - 3x_2 + 2x_3 = \}x_2, -x_1 + 2x_2 = \}x_3 \text{can possess a non-trivial solution only if } = 1, \ \} = -3$. Obtain the general solution in each case. UNIT-II 3. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ and hence find $A^{-1} \text{ using Cayley-Hamilton theorem.}$ OR 4. Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ to canonical form by using orthogonal transformation. 14M CO2 OR 6. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, then evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ or $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ or $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ or $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ or $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ or $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ or $\frac{\partial(u,v,w)}{\partial$		*****	Marks	CO	Blooms
b) Solve $x + y + z = 4$, $2x + 5y - 2z = 3$, $x + 7y - 7z = 5$ OR 2. Show that the system of equations $2x_1 - 2x_2 + x_3 = 3x_1$, $2x_1 - 3x_2 + 2x_3 = 3x_2$, $-x_1 + 2x_2 = 3x_3$ can possess a non-trivial solution only if $x = 3$. Obtain the general solution in each case. UNIT-II 3. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ and hence find A^{-1} using Cayley-Hamilton theorem. OR 4. Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ to canonical form by using orthogonal transformation. UNIT-III 5. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, then evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ $\frac{\partial u}{\partial(x,y,z)}$ at $\frac{\partial u}{\partial(x,y,z)}$ at $\frac{\partial u}{\partial(x,y,z)}$ $\frac{\partial u}{\partial(x$	1. a				Level
Show that the system of equations $2x_1-2x_2+x_3=3x_1, 2x_1-3x_2+2x_3=3x_2, -x_1+2x_2=3x_3$ can possess a non-trivial solution only if $y=1$,			7M	CO1	L3
2. Show that the system of equations $2x_1-2x_2+x_3= x_1-2x_1-3x_2+2x_3= x_2-x_1+2x_2= x_3$ can possess a non-trivial solution only if $x_1=1$, $x_2=1$, $x_3=1$, $x_2=1$, $x_3=1$, x	k		7M	CO1	L3
A ⁻¹ using Cayley-Hamilton theorem. OR 4. Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ to canonical form by using orthogonal transformation. 14M CO2 UNIT-III 5. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, then evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ OR 6. Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ 14M CO3 UNIT-IV 7. a) Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x-1)$. b) Using Maclaurin's series , expand e^x in powers of x . OR 8. Trace the curve $y^2(2a - x) = x^3$ 14M CO4 UNIT-V 9. Evaluate $\iint_{0.00}^{1.1} xyz dx dy dz$ 7M CO5		$2x_1 - 2x_2 + x_3 = \}x_1, 2x_1 - 3x_2 + 2x_3 = \}x_2, -x_1 + 2x_2 = \}x_3$ can possess non-trivial solution only if $\}$ =1, $\}$ =-3. Obtain the general solution in each case. UNIT-II Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ and hence find	h 14M	CO1	L2
using orthogonal transformation. 14M CO2 UNIT-III 5. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, then evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at (1,-1,0) OR 6. Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ 14M CO3 UNIT-IV 7. a) Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x - 1)$. 7. b) Using Maclaurin's series, expand e^x in powers of x . OR 8. Trace the curve $y^2(2a - x) = x^3$ 14M CO4 UNIT-V 9. Evaluate $\int_{0}^{1} \int_{0}^{1} xyz dx dy dz$ 7M CO5		A^{-1} using Cayley-Hamilton theorem.	14M	CO2	L2
6. Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ UNIT-IV 7. a) Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x - 1)$. 5. b) Using Maclaurin's series, expand e^x in powers of x . Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ The CO3 UNIT-IV 7. a) Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of x . 7. a) Using Maclaurin's series, expand e^x in powers of x . OR 8. Trace the curve $y^2(2a - x) = x^3$ UNIT-V 9. Evaluate $\int_{0}^{1} \int_{0}^{1} xyz dx dy dz$ 7. The CO3 The CO3 The CO4 The CO4 The CO3 The CO4 The CO4 The CO5 The CO5	4.	using orthogonal transformation.	-	CO2	L3
6. Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ [UNIT-IV] 7. a) Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x-1)$. 7. b) Using Maclaurin's series, expand e^x in powers of x . 7. oR 8. Trace the curve $y^2(2a-x) = x^3$ 14M CO4 UNIT-V 9. Evaluate $\int_{0}^{1} \int_{0}^{1} xyz dx dy dz$ 7M CO5	5.	() 2 / 2 /) 14M	CO3	L3
of $(x-1)$. b) Using Maclaurin's series , expand e^x in powers of x . OR 8. Trace the curve $y^2(2a-x)=x^3$ UNIT-V 9. Evaluate $\iint_{0}^{1} \int_{0}^{1} xyz dx dy dz$ 7M CO4 UNIT-V 7M CO4 7M CO5	6.	Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$	14M	CO3	L3
8. Trace the curve $y^2(2a-x)=x^3$ 14M CO4 9. Evaluate $\iint_{0}^{1} \int_{0}^{1} xyz dx dy dz$ 7M CO5	7. 8	, come control in the		CO4	L3
8. Trace the curve $y^2(2a-x)=x^3$ 14M CO4 9. Evaluate $\iint_{0}^{1} \int_{0}^{1} xyz dx dy dz$ 7M CO5	k	Using Maclaurin's series, expand e^x in powers of x .	7M	CO4	L3
0 0 0 7M CO5	8.	Trace the curve $y^2(2a-x) = x^3$	14M	CO4	L4
10. Define Gamma Function, Beta Function and Evaluate $\int_{1}^{1} x^{4} \left(\log \frac{1}{x}\right)^{3} dx$ using		0 0 0 OR		CO5	L3

10.

- Γ function.

Page 1 of 1

L1

14M CO5

Hall Ticket Number :					

Code: 19AC12T

R-19

I B.Tech. I Semester Supplementary Examinations February 2022

Applied Physics

(Common to EEE and ECE)

Max. Marks: 70

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

			Marks	СО	Blooms Level
		UNIT-I			
1.	a)	Define interference of light	4M	CO1	L1
	b)	Explain the constructive and destructive interference of light.	10M	CO1	L2
		OR			
2.	a)	What are the engineering applications of interference?	5M	CO1	L1
	b)	Distinguish between the Fraunhofer and Fresnel's diffraction of light.	9M	CO1	L4
	,				
		UNIT-II			
3.		Derive the expression for internal or local filed in dielectric materials.	14M	CO2	L2
		OR			
4.		Classify the magnetic materials based on their magnetic property.	14M	CO2	L4
		UNIT-III			
5.	a)	State the Gauss's theorem for divergence.	4M	CO3	L1
	b)	Discuss about importance of the Poynting theorem.	10M	CO3	L3
	٠,	OR			
6.	a)	Discuss various applications of optical fibers in sensors.	6M	CO3	L3
٠.	b)	Explain signal propagation in multimode graded index optical fiber	8M	CO3	L2
	٠,		•		
		UNIT-IV			
7.	a)	Explain direct and indirect band gap semiconductors.	8M	CO4	L2
	b)	Deduce Einstein's relation in semiconductors.	6M	CO4	L3
	,	OR			
8	a)	What are the two types of charge carriers in semiconductors? Define			
O.	ω,	intrinsic and extrinsic semiconductors.	6M	CO4	L1
	b)	Analyze the characteristic features to distinguish between n-type and p-type			
	,	semiconductors.	8M	CO4	L4
		UNIT-V			
9.	a)	Discuss about ac and dc Josephson effect in superconductors.	8M	CO5	L3
	b)	Write the general properties of superconductors.	6M	CO5	L1
		OR			
10.		Explain any two methods to preparation of nanomaterials.	14M	CO5	L2
