Code: 19A411T

I B.Tech. I Semester Supplementary Examinations March/April 2023

Essentials of Electrical \& Electronics Engineering

(Common to EEE \& ECE)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

1. What are the types of resistors? Explain any three with neat diagrams.

OR

2. a) Find the color codes for the resister values given below.
1) 1000
2) 4700
3) 10 K
4) 2 M
$4 \mathrm{M} \quad \mathrm{CO} 1 \mathrm{~L} 3$
b) Classify the variable resistors and explain any two of them.

10M CO1 L4
UNIT-II
3. a) Find the current through 4,1 resisters using current division rule.

7M CO2 L3
b) Determine the equivalent inductance when three inductors with values 6 H , 4 Hand 6 H are connected in parallel.

7M CO2 L3

OR

4. a) Find the equivalent resistance between A, B terminals for the network given below.

b) State and explain Kirchhoff's laws.

UNIT-III

5. a) Draw and explain piece-wise linear diode characteristics
$8 \mathrm{M} \mathrm{CO3} \mathrm{~L} 2$
b) Define the following
i) cut in voltage (Vc) ii) Static resistance iii) Dynamic Resistance
$6 \mathrm{M} \mathrm{CO} \quad \mathrm{L} 1$
OR
6. With neat sketch explain the principle of energy band diagram of an open circuited PN junction diode.

14 M CO3 L2

UNIT-IV

7. Derive the expression for ripple factor of a Full-Wave center-tap rectifier with capacitor filter and then comment on the result.

14M CO4 L2
OR
8. a) Derive the expressions for the following for full wave rectifier
i) Average DC load current ii) Average DC load voltage iii) RMS load current $\quad 8 \mathrm{M} \quad \mathrm{CO} 4 \quad \mathrm{~L} 2$
b) Compare half wave and full wave rectifiers in respect of following terms and comment on the comparisons. i) efficiency
ii) Ripple factor

6 M CO L3
UNIT-V
9. a) Draw and explain the input and output characteristics of transistor in CB configuration.

8M CO5 L2
b) Define the following i. Active region ii. Saturation region iii. Cut-off region. 6 M CO5 L1
10. Explain the operation of function generator with neat diagram. $14 \mathrm{M} \quad \mathrm{CO} \quad \mathrm{L} 2$

Code: 19A312T

I B.Tech. I Semester Supplementary Examinations March/April 2023

Engineering Graphics \& Design

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

120 mm and 80 mm . Draw an ellipse by Concentric Circles method

$$
14 \mathrm{M} \quad \mathrm{CO} 1
$$

OR

2. Construct a parabola, when the distance of the focus from the directrix is 50 mm . Also draw tangent on normal to the curve at a point 35 mm from the directrix

UNIT-II

3. Draw an involute for a square of side 25 mm . Also draw a normal and tangent to the curve at a distance of 70 mm from the center of square

OR

4. Construct a cycloid having a generating circle diameter as 50 mm for one revolution clockwise. Draw a normal and tangent to a curve at a point 35 mm above the base line

UNIT-III

5. A line $A B, 50 \mathrm{~mm}$ long, has its end $A 20 \mathrm{~mm}$ above the H.P and 30 mm below the V.P. the line is inclined at 30° to the H.P and at 45° to the V.P. Draw the projections

OR

6. A line $A B$ has its end $A 20 \mathrm{~mm}$ above H.P. and 25 mm in front of V.P. The other end B is 45 mm above H.P. and 55 mm in front of V.P. The distance between the end projectors is 60 mm . Draw its projections and also find the true length and true inclination of the line with H.P and V.P

UNIT-IV

7. A thin rectangular plate of sides of $60 \mathrm{~mm} \times 30 \mathrm{~mm}$ has its shortest side in the VP and inclined at 30° to the HP. Project its top view if its front view is a square of 30 mm long sides

OR

8. A regular hexagonal lamina of 22 mm side, rests on one of its sides on HP. It is parallel to and 15 mm away from the VP. The plane is vertical. Draw its projections

UNIT-V

9. Draw the projections of a cone, base 75 mm diameter and axis 100 mm lying on the HP on one of its generators with the axis parallel to the VP

OR

10. Convert the following isometric view to orthographic views

\square
Hall Ticket Number :

Code: 19A511T

| B.Tech. I Semester Supplementary Examinations March/April 2023
 Problem Solving and C Programming

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Define Algorithm. Explain the characteristics of algorithm 6M
b) What is meant by flow chart? Explain the symbols used in flowchart with an example. 8 M OR
2. a) Explain the structure of C program with an example program. 7M
b) Discuss about C data types. 7M

UNIT-II

3. a) Explain conditional statements with an example.
b) Write a c program to find whether the given year is leap year or not.

OR

4. a) What is meant by searching? Explain binary search algorithm.
b) Write a c program to print array of elements in ascending order using selection sort. 7M

UNIT-III

5. a) Define string. Explain declaration of string. Explain any three string handling functions
with neat syntax and example.
b) Write C program to concatenate two strings without using strcat() function 6M
OR
6. a) Explain the following key words with example. i) auto ii) register iii) static iv) extern. 8 M
b) Write a c program to illustrate functions with arguments and returning value. 6M

UNIT-IV

7. a) Define pointer. Explain pointer arithmetic operations.
b) Explain call by reference with an example program.

OR

8. a) Explain dynamic memory allocation functions. 7M
b) Write a C program to demonstrate array of pointers.

UNIT-V

9. a) Define structure and union. Explain the syntax and accessing elements from structure and union with an example.
b) Write a C program to maintain a record of n students with four fields (Roll no, name,
marks and grade). Print the student details.

OR

10. a) Define file. Write a C program to write character to a file and reading character from file. 8 M
b) Discuss about file operations.

Code: 19AC11T

I B.Tech. I Semester Supplementary Examinations March/April 2023

Algebra and Calculus
 (Common to All Branches)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find the Eigen values and Eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

OR

2. Prove that the following set of equations are consistent and solve them $3 x+3 y+2 z=1, x+2 y=4,10 y+3 z=-2,2 x-3 y-z=5$

UNIT-II

3. Diagonalize the matrix $\mathrm{A}=\left[\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$

14M CO2 L2

OR

4. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 x y-2 y z+2 z x$ to canonical form by using orthogonal transformation.

14M CO2 L3

UNIT-III

5. a) If $z=u^{2}+v^{2}$ and $u=a t^{2}, v=2 a t$, then find $\frac{d z}{d t}$

7M CO3 L3
b) Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $z=\log \left(x^{2}+y^{2}\right)$

7M CO3 L3

OR

6. A rectangular box open at the top is to have volume of 32 cubic ft . Find the dimensions of the box requiring least material for its construction.

UNIT-IV

7. Trace the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$

14M CO4 L4

OR

8. Using Taylor's theorem, express the polynomial $2 x^{3}+7 x^{2}+x-6$ in powers of
($x-1$).

14M CO4 L3

UNIT-V

9. Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}}$
10. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y \sqrt{x^{2}+y^{2}} d x d y$ by changing into polar coordinates.

14M CO5 L3
OR

Hall Ticket Number :

Code: 19AC12T

R-19

| B.Tech. I Semester Supplementary Examinations March/April 2023

Applied Physics

(Common to EEE \& ECE)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain constructive and destructive interference of light.

4M CO1L2
b) Derive the expression for to determine wavelength of light by newton's rings method.

OR

2. a) Define polarization of light and mention types of polarized light.
b) Explain the construction and working of Nicol prism to produce and analyze of plane polarized light.

UNIT-II

3. Explain various types of polarizations in dielectrics.

OR

4. a) Define magnetic dipole moment and intensity of magnetization.
b) Discuss the origin of magnetic momentum of an atom.

4 M CO2 L1

UNIT-III

5. a) Explain total internal reflection in optical fiber.
$4 \mathrm{M} \mathrm{CO3}$
L2
b) Classify the optical fibers based on the refractive index of the core material.

10M CO3L4

OR
6. a) Write are the applications of optical fiber.
b) Explain different types of optical fibers based on refractive index, materials and modes of propagation.

10M CO3 L2

UNIT-IV

7. Derive the expression density of charge carriers for intrinsic semiconductor OR
8. a) Define Hall effect and derive expression for Hall coefficient.
b) Mention the applications of Hall effect.

10M
4M CO4 L3

UNIT-V
9. a) Define superconductor and write the applications of superconductors.
$6 \mathrm{M} \mathrm{CO5}$
L3
b) Classify the superconductors.
$8 \mathrm{M} \mathrm{CO5}$

OR

10. a) Brief the top-down and top-up approaches for synthesis of nanomaterials.
b) $\begin{aligned} & \text { Explain the structure determination of nanomaterials by } \\ & \text { technique. }\end{aligned} \begin{array}{lllll} & & \mathrm{CO} \text {-ray diffraction } & & \mathrm{L} 2 \\ & 10 \mathrm{M} & \mathrm{CO} 5 \quad \mathrm{~L} 2\end{array}$
