			R-19)	
	Coc	le: 19A411T			
		I B.Tech. I Semester Supplementary Examinations June 20)24		
		Essencial of Electrical & Electronics Engineering			
		(Electronics and Communication Engineering)	. .		
			me: 3 F		
	Ans	wer any five full questions by choosing one question from each unit (5x14	F – 70 M	aiks j	
			Marks	СО	
		UNIT–I			
1.		What are the types of resistors? Explain any three with neat diagrams.	14M	CO1	
		OR			
2.		What is potentiometer? Explain the types of Potentiometers with neat			
		sketch.	14M	CO1	
		UNIT–II			
3.		Find current through 5 resistor using KVL and verify it with KCL for the			
		given circuit below and also find the power consumed by each resistor.			
		5 A 1			
		$12V\frac{1}{T} \leq 5 \frac{1}{T} 6V$			
			14M	CO2	
		BOR			
4.	a)	State and explain Thevenin's theorem.	7M	CO2	
	b)	State and explain super position theorem.	7M	CO2	
		UNIT–III			
5.	a)	A Ge diode carries a current of 1mA at room temperature when a forward			
		bias of 0.15 V is applied. Estimate the reverse saturation current at room temperature.	6M	CO3	
	b)	Derive the expression for Diffusion Capacitance.	8M	CO3	
	- /	OR			
6.	a)	Write the applications of Zener and PN junction diode	6M	CO3	
	b)	Draw and explain the characteristics of PN junction diode.	8M	CO3	
		UNIT-IV			
7.	a)	A Full wave Rectifier with C-Type filter is to supply a dc current of 20MA			
		at 16 V. If f=50HZ and the ripple allowed is 5%. Calculate			
		a) required Secondary voltage of the transformer b) the ratio of I_{peak}/I_{mean}	014	004	
	ଜ)	through the diodes c) The values of C required.	8M	CO4	
	b)	Compare the performance measure of Different filters OR	6M	CO4	
R	a)	List the merits and demerits of LC filter	6M	CO4	
0.	a) b)	With neat waveforms explain the Full wave Rectifier with LC filter.	8M	CO4	
	0)		OW	004	
9.	a)	Derive the relation between and	4M	CO5	
5.	b)	Compare CB, CE and CC configurations of a transistor.		CO5	
	~)	OR		000	
		With neat block diagram explain the working of CRO and list out its			
0.		WILL HEAL DIVER VIAUALLE EXDIAILE INE WORKING OF CRED AND INFORMATION			

Cod	Ticket Number : R-19	
cou	e: 19A511T	
	I B.Tech. I Semester Supplementary Examinations June 2024	
	Problem Solving and C Programming (Common to All Branches)	
Ma	x. Marks: 70 Time: 3 Hou	Jrs
Ansv	wer any five full questions by choosing one question from each unit (5x14 = 70 Mark	s)
	*****	Marl
	UNIT–I	Iviair
. a)	Describe Structure of C Program	51
b)	What are identifiers? What are the rules for declaring identifiers? Give example.	91
	OR	-
. a)	What is an algorithm? Describe the characteristics of an Algorithm	6
b)	What is data type? Explain basic data types and their sizes used in a C Language	8
	UNIT-II	
. a)	Describe Conditional Statements Used in C Language	71
b)	Write a program on calculating area and perimeter of square	71
	OR	
. a)	Explain various iterative statements available in C language with examples.	8
b)	Write a program to find out whether the given number is Armstrong or not?	6
	UNIT–III	
. a)	Define string. Explain declaration of string. Explain any three string handling functions	
	with neat syntax and example.	81
b)	Write C program to concatenate two strings without using strcat() function	6
,	OR	
. a)	Explain the following key words with example. i) auto ii) register iii) static iv) extern.	8
b)	Write a c program to illustrate functions with arguments and returning value.	6
	UNIT-IV	
. a)	Define pointer. Explain pointer arithmetic operations.	7
b)	Explain call by reference with an example program. OR	7
. a)	Explain dynamic memory allocation functions.	7
,	Write a C program to demonstrate array of pointers.	7
1 11		'
b)		
,	Define structure and Union. Explain the syntax and accessing elements from	
,	Define structure and union. Explain the syntax and accessing elements from structure and union with an example.	
,		8
. a)	structure and union with an example.	8
. a)	structure and union with an example. Write a C program to maintain a record of n students with four fields (Roll no, name,	8
. a)	structure and union with an example. Write a C program to maintain a record of n students with four fields (Roll no, name, marks and grade). Print the student details using structures.	8

		Hal	I Ticket Number :			
	L	Cor	le: 19AC11T	R-19	7	
		Мс	I B.Tech. I Semester Supplementary Examinations June 20 Algebra and Calculus (Common to All Branches) IX. Marks: 70	me: 3 ł		
ictice.		Ans	wer any five full questions by choosing one question from each unit (5x14 ********	= 70 M	arks)	
ed as malpre	1.		UNIT-I Solve the system of equations by matrix method x + y + z = 6, 2x + 3y - 2z = 2, 5x + y + 2z = 13	Marks	co	BL
treate			OR	14M	CO1	L3
2+8=40, will be	2.		Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \end{bmatrix}$			
g. 37				14M	CO1	L3
evaluator and/or equations written eg. 32+8=40, will be treated as malpractice	3.		$UNIT-II$ Diagonalize the matrix A= $\begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ OR	14M	CO2	L2
evaluator and	4.		Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and hence			
eal to			find A^{-1} using Cayley-Hamilton theorem.	14M	CO2	L2
ation, app	5.		Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$ OR	14M	CO3	L3
	5.	a)	Find the first and second partial derivatives of $z = x^3 + y^3 - 3axy$	7M	CO3	13
Z. Any revealing or identification, appeal to		b)	If $z = f(x+ct) + g(x-ct)$ then prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$		CO3	
ny re	7.		UNIT-IV Trace the curve $r^2 = a^2 \cos 2_{\#}$	1414	CO4	ГA
N.			OR	14111	004	L4
8	3.	a)	Using Maclaurin's series, expand $\sin x$ in powers of x .	7M	CO4	L3
		b)	Using Taylor's theorem, express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x-1)$.	7M	CO4	L3
	`		UNIT-V			
ţ	Э.		Evaluate $\int_{0}^{r} \int_{0}^{sun_{r}} r dr d_{r}$	14M	CO5	L3
1().		Evaluate $\int_{0}^{f/2} \sin^{6} u \cos^{7} u du$	14M	CO5	L3

	па		R-19	2	
(Coc	de: 19AC12T			l
		I B.Tech. I Semester Supplementary Examinations June 202	24		
	Mc	(Common to EEE & ECE) ax. Marks: 70 Tin	ne:3H	Hours	
		swer any five full questions by choosing one question from each unit (5x14			
		*****	Marks	со	
		UNIT–I	Marks	00	
1.	a)	A parallel beam of monochromatic light is allowed to incident normally on a			
		plane transmission grating having 5000 lines per cm and second order			
		spectral line is found to be diffracted through 30°. Calculate the wavelength of light.	5M	CO1	
	b)	Demonstrate the experimental procedure of Newton's ring method to	5101	001	
	0)	determine radius of curvature of plano convex lens.	9M	CO1	
		OR			
2.	a)	Derive the expression for to determine wavelength of light by newton's			
		rings method.	10M	CO1	
	b)	Distinguish between the interference and diffraction.	4M	CO1	
		UNIT–II			
3.	a)	A solid elemental dielectric with $3x10^{28}$ atoms/m ³ shows an electronic			
		polarizability of 10 ⁻⁴⁰ Fm ² . Assuming the internal electric field to be a Lorentz field. Calculate the dielectric constant of the material.	5M	CO2	
	b)	Distinguish between soft and hard magnetic materials.	9M	CO2	
	0)	OR	OW	002	
4.	a)	Brief about ferroelectricity?	7M	CO2	
	b)	Explain frequency dependency of polarizability of dielectric materials		CO2	
	,				
5.	a)	Explain signal propagation in multimode graded index optical fiber	9M	CO3	
	b)	Write are the applications of optical fiber.	5M	CO3	
		OR			
6.	a)	Discuss about importance of the Poynting theorem.	9M	CO3	
	b)	Explain total internal reflection in optical fiber.	5M	CO3	
		UNIT–IV			
7.	a)	Deduce Einstein's relation in semiconductors.	6M	CO4	
	b)	Explain direct and indirect band gap semiconductors.	8M	CO4	
		OR			
8.	a)	Analyze the characteristic features to distinguish between n-type and p-	014	CO4	
	b)	type semiconductors.	8M 6M	CO4	
	b)	Define Hall effect and write its applications.	6M	CO4	
9.		Explain Josephson effects in superconductors and draw the I-V characteristics			
5.		of Josephson effect.	14M	CO5	
		OR			
0.	a)	Analyze the characterization of nanomaterials by scanning electron microscope.	8M	CO5	
	b)	Write various applications of nanomaterials.	6M	CO5	

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages.